This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issoi.1 | ⊢ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) | |
| issoi.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) | ||
| issoi.3 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) | ||
| Assertion | issoi | ⊢ 𝑅 Or 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issoi.1 | ⊢ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 𝑅 𝑥 ) | |
| 2 | issoi.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) | |
| 3 | issoi.3 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) | |
| 4 | 1 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑥 ) |
| 5 | 2 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| 6 | 4 5 | ispod | ⊢ ( ⊤ → 𝑅 Po 𝐴 ) |
| 7 | 3 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 8 | 6 7 | issod | ⊢ ( ⊤ → 𝑅 Or 𝐴 ) |
| 9 | 8 | mptru | ⊢ 𝑅 Or 𝐴 |