This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 3-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| Assertion | ltexprlem2 | ⊢ ( 𝐵 ∈ P → 𝐶 ⊊ Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| 2 | 1 | eqabri | ⊢ ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 3 | elprnq | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑦 +Q 𝑥 ) ∈ Q ) | |
| 4 | addnqf | ⊢ +Q : ( Q × Q ) ⟶ Q | |
| 5 | 4 | fdmi | ⊢ dom +Q = ( Q × Q ) |
| 6 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 7 | 5 6 | ndmovrcl | ⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 8 | 3 7 | syl | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 9 | ltaddnq | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → 𝑥 <Q ( 𝑥 +Q 𝑦 ) ) | |
| 10 | 9 | ancoms | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) → 𝑥 <Q ( 𝑥 +Q 𝑦 ) ) |
| 11 | addcomnq | ⊢ ( 𝑥 +Q 𝑦 ) = ( 𝑦 +Q 𝑥 ) | |
| 12 | 10 11 | breqtrdi | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) → 𝑥 <Q ( 𝑦 +Q 𝑥 ) ) |
| 13 | prcdnq | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑥 <Q ( 𝑦 +Q 𝑥 ) → 𝑥 ∈ 𝐵 ) ) | |
| 14 | 12 13 | syl5 | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) → 𝑥 ∈ 𝐵 ) ) |
| 15 | 8 14 | mpd | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 16 | 15 | ex | ⊢ ( 𝐵 ∈ P → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 → 𝑥 ∈ 𝐵 ) ) |
| 17 | 16 | adantld | ⊢ ( 𝐵 ∈ P → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 18 | 17 | exlimdv | ⊢ ( 𝐵 ∈ P → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) ) |
| 19 | 2 18 | biimtrid | ⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) |
| 20 | 19 | ssrdv | ⊢ ( 𝐵 ∈ P → 𝐶 ⊆ 𝐵 ) |
| 21 | prpssnq | ⊢ ( 𝐵 ∈ P → 𝐵 ⊊ Q ) | |
| 22 | 20 21 | sspsstrd | ⊢ ( 𝐵 ∈ P → 𝐶 ⊊ Q ) |