This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 3-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| Assertion | ltexprlem1 | ⊢ ( 𝐵 ∈ P → ( 𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| 2 | pssnel | ⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴 ) ) | |
| 3 | prnmadd | ⊢ ( ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) | |
| 4 | 3 | anim2i | ⊢ ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ) → ( ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 5 | 19.42v | ⊢ ( ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝐵 ∈ P ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 7 | 6 | exp32 | ⊢ ( ¬ 𝑦 ∈ 𝐴 → ( 𝐵 ∈ P → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
| 8 | 7 | com3l | ⊢ ( 𝐵 ∈ P → ( 𝑦 ∈ 𝐵 → ( ¬ 𝑦 ∈ 𝐴 → ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) ) |
| 9 | 8 | impd | ⊢ ( 𝐵 ∈ P → ( ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴 ) → ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) |
| 10 | 9 | eximdv | ⊢ ( 𝐵 ∈ P → ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴 ) → ∃ 𝑦 ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) |
| 11 | 2 10 | syl5 | ⊢ ( 𝐵 ∈ P → ( 𝐴 ⊊ 𝐵 → ∃ 𝑦 ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) ) |
| 12 | 1 | eqabri | ⊢ ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 13 | 12 | exbii | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐶 ↔ ∃ 𝑥 ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 14 | n0 | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐶 ) | |
| 15 | excom | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) | |
| 16 | 13 14 15 | 3bitr4i | ⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑥 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 17 | 11 16 | imbitrrdi | ⊢ ( 𝐵 ∈ P → ( 𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅ ) ) |