This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 6-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| Assertion | ltexprlem3 | ⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | ⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } | |
| 2 | elprnq | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑦 +Q 𝑥 ) ∈ Q ) | |
| 3 | addnqf | ⊢ +Q : ( Q × Q ) ⟶ Q | |
| 4 | 3 | fdmi | ⊢ dom +Q = ( Q × Q ) |
| 5 | 0nnq | ⊢ ¬ ∅ ∈ Q | |
| 6 | 4 5 | ndmovrcl | ⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 7 | 6 | simpld | ⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → 𝑦 ∈ Q ) |
| 8 | ltanq | ⊢ ( 𝑦 ∈ Q → ( 𝑧 <Q 𝑥 ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑦 +Q 𝑥 ) ) ) | |
| 9 | 2 7 8 | 3syl | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑧 <Q 𝑥 ↔ ( 𝑦 +Q 𝑧 ) <Q ( 𝑦 +Q 𝑥 ) ) ) |
| 10 | prcdnq | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( ( 𝑦 +Q 𝑧 ) <Q ( 𝑦 +Q 𝑥 ) → ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) | |
| 11 | 9 10 | sylbid | ⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( 𝑧 <Q 𝑥 → ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
| 12 | 11 | impancom | ⊢ ( ( 𝐵 ∈ P ∧ 𝑧 <Q 𝑥 ) → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 → ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
| 13 | 12 | anim2d | ⊢ ( ( 𝐵 ∈ P ∧ 𝑧 <Q 𝑥 ) → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
| 14 | 13 | eximdv | ⊢ ( ( 𝐵 ∈ P ∧ 𝑧 <Q 𝑥 ) → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
| 15 | 1 | eqabri | ⊢ ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 16 | vex | ⊢ 𝑧 ∈ V | |
| 17 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 +Q 𝑥 ) = ( 𝑦 +Q 𝑧 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ↔ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
| 19 | 18 | anbi2d | ⊢ ( 𝑥 = 𝑧 → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
| 20 | 19 | exbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
| 21 | 16 20 1 | elab2 | ⊢ ( 𝑧 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
| 22 | 14 15 21 | 3imtr4g | ⊢ ( ( 𝐵 ∈ P ∧ 𝑧 <Q 𝑥 ) → ( 𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶 ) ) |
| 23 | 22 | ex | ⊢ ( 𝐵 ∈ P → ( 𝑧 <Q 𝑥 → ( 𝑥 ∈ 𝐶 → 𝑧 ∈ 𝐶 ) ) ) |
| 24 | 23 | com23 | ⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶 ) ) ) |
| 25 | 24 | alrimdv | ⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ∀ 𝑧 ( 𝑧 <Q 𝑥 → 𝑧 ∈ 𝐶 ) ) ) |