This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 3-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ltexprlem.1 | |- C = { x | E. y ( -. y e. A /\ ( y +Q x ) e. B ) } |
|
| Assertion | ltexprlem2 | |- ( B e. P. -> C C. Q. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexprlem.1 | |- C = { x | E. y ( -. y e. A /\ ( y +Q x ) e. B ) } |
|
| 2 | 1 | eqabri | |- ( x e. C <-> E. y ( -. y e. A /\ ( y +Q x ) e. B ) ) |
| 3 | elprnq | |- ( ( B e. P. /\ ( y +Q x ) e. B ) -> ( y +Q x ) e. Q. ) |
|
| 4 | addnqf | |- +Q : ( Q. X. Q. ) --> Q. |
|
| 5 | 4 | fdmi | |- dom +Q = ( Q. X. Q. ) |
| 6 | 0nnq | |- -. (/) e. Q. |
|
| 7 | 5 6 | ndmovrcl | |- ( ( y +Q x ) e. Q. -> ( y e. Q. /\ x e. Q. ) ) |
| 8 | 3 7 | syl | |- ( ( B e. P. /\ ( y +Q x ) e. B ) -> ( y e. Q. /\ x e. Q. ) ) |
| 9 | ltaddnq | |- ( ( x e. Q. /\ y e. Q. ) -> x |
|
| 10 | 9 | ancoms | |- ( ( y e. Q. /\ x e. Q. ) -> x |
| 11 | addcomnq | |- ( x +Q y ) = ( y +Q x ) |
|
| 12 | 10 11 | breqtrdi | |- ( ( y e. Q. /\ x e. Q. ) -> x |
| 13 | prcdnq | |- ( ( B e. P. /\ ( y +Q x ) e. B ) -> ( xx e. B ) ) |
|
| 14 | 12 13 | syl5 | |- ( ( B e. P. /\ ( y +Q x ) e. B ) -> ( ( y e. Q. /\ x e. Q. ) -> x e. B ) ) |
| 15 | 8 14 | mpd | |- ( ( B e. P. /\ ( y +Q x ) e. B ) -> x e. B ) |
| 16 | 15 | ex | |- ( B e. P. -> ( ( y +Q x ) e. B -> x e. B ) ) |
| 17 | 16 | adantld | |- ( B e. P. -> ( ( -. y e. A /\ ( y +Q x ) e. B ) -> x e. B ) ) |
| 18 | 17 | exlimdv | |- ( B e. P. -> ( E. y ( -. y e. A /\ ( y +Q x ) e. B ) -> x e. B ) ) |
| 19 | 2 18 | biimtrid | |- ( B e. P. -> ( x e. C -> x e. B ) ) |
| 20 | 19 | ssrdv | |- ( B e. P. -> C C_ B ) |
| 21 | prpssnq | |- ( B e. P. -> B C. Q. ) |
|
| 22 | 20 21 | sspsstrd | |- ( B e. P. -> C C. Q. ) |