This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltexpi | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 <N 𝐵 ↔ ∃ 𝑥 ∈ N ( 𝐴 +N 𝑥 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn | ⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) | |
| 2 | pinn | ⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) | |
| 3 | nnaordex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 5 | ltpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 6 | addpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝑥 ∈ N ) → ( 𝐴 +N 𝑥 ) = ( 𝐴 +o 𝑥 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( ( 𝐴 ∈ N ∧ 𝑥 ∈ N ) → ( ( 𝐴 +N 𝑥 ) = 𝐵 ↔ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 8 | 7 | pm5.32da | ⊢ ( 𝐴 ∈ N → ( ( 𝑥 ∈ N ∧ ( 𝐴 +N 𝑥 ) = 𝐵 ) ↔ ( 𝑥 ∈ N ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 9 | elni2 | ⊢ ( 𝑥 ∈ N ↔ ( 𝑥 ∈ ω ∧ ∅ ∈ 𝑥 ) ) | |
| 10 | 9 | anbi1i | ⊢ ( ( 𝑥 ∈ N ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ↔ ( ( 𝑥 ∈ ω ∧ ∅ ∈ 𝑥 ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) |
| 11 | anass | ⊢ ( ( ( 𝑥 ∈ ω ∧ ∅ ∈ 𝑥 ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ↔ ( 𝑥 ∈ ω ∧ ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) | |
| 12 | 10 11 | bitri | ⊢ ( ( 𝑥 ∈ N ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ↔ ( 𝑥 ∈ ω ∧ ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 13 | 8 12 | bitrdi | ⊢ ( 𝐴 ∈ N → ( ( 𝑥 ∈ N ∧ ( 𝐴 +N 𝑥 ) = 𝐵 ) ↔ ( 𝑥 ∈ ω ∧ ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) ) |
| 14 | 13 | rexbidv2 | ⊢ ( 𝐴 ∈ N → ( ∃ 𝑥 ∈ N ( 𝐴 +N 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ∃ 𝑥 ∈ N ( 𝐴 +N 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) |
| 16 | 4 5 15 | 3bitr4d | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 <N 𝐵 ↔ ∃ 𝑥 ∈ N ( 𝐴 +N 𝑥 ) = 𝐵 ) ) |