This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of a word concatenated with a singleton word is the symbol of the singleton word. (Contributed by AV, 6-Aug-2018) (Proof shortened by AV, 22-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lswccats1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( lastS ‘ ( 𝑊 ++ 〈“ 𝑆 ”〉 ) ) = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → 𝑊 ∈ Word 𝑉 ) | |
| 2 | s1cl | ⊢ ( 𝑆 ∈ 𝑉 → 〈“ 𝑆 ”〉 ∈ Word 𝑉 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → 〈“ 𝑆 ”〉 ∈ Word 𝑉 ) |
| 4 | s1nz | ⊢ 〈“ 𝑆 ”〉 ≠ ∅ | |
| 5 | 4 | a1i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → 〈“ 𝑆 ”〉 ≠ ∅ ) |
| 6 | lswccatn0lsw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 〈“ 𝑆 ”〉 ∈ Word 𝑉 ∧ 〈“ 𝑆 ”〉 ≠ ∅ ) → ( lastS ‘ ( 𝑊 ++ 〈“ 𝑆 ”〉 ) ) = ( lastS ‘ 〈“ 𝑆 ”〉 ) ) | |
| 7 | 1 3 5 6 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( lastS ‘ ( 𝑊 ++ 〈“ 𝑆 ”〉 ) ) = ( lastS ‘ 〈“ 𝑆 ”〉 ) ) |
| 8 | lsws1 | ⊢ ( 𝑆 ∈ 𝑉 → ( lastS ‘ 〈“ 𝑆 ”〉 ) = 𝑆 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( lastS ‘ 〈“ 𝑆 ”〉 ) = 𝑆 ) |
| 10 | 7 9 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ) → ( lastS ‘ ( 𝑊 ++ 〈“ 𝑆 ”〉 ) ) = 𝑆 ) |