This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of a nonempty word concatenated with its first symbol is the first symbol. (Contributed by AV, 28-Jun-2018) (Proof shortened by AV, 1-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lswccats1fst | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdsymb1 | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( P ` 0 ) e. V ) |
|
| 2 | lswccats1 | |- ( ( P e. Word V /\ ( P ` 0 ) e. V ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) |
|
| 3 | 1 2 | syldan | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( P ` 0 ) ) |
| 4 | simpl | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P e. Word V ) |
|
| 5 | 1 | s1cld | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> <" ( P ` 0 ) "> e. Word V ) |
| 6 | lencl | |- ( P e. Word V -> ( # ` P ) e. NN0 ) |
|
| 7 | elnnnn0c | |- ( ( # ` P ) e. NN <-> ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) ) |
|
| 8 | 7 | biimpri | |- ( ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) |
| 9 | 6 8 | sylan | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) |
| 10 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` P ) ) <-> ( # ` P ) e. NN ) |
|
| 11 | 9 10 | sylibr | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> 0 e. ( 0 ..^ ( # ` P ) ) ) |
| 12 | ccatval1 | |- ( ( P e. Word V /\ <" ( P ` 0 ) "> e. Word V /\ 0 e. ( 0 ..^ ( # ` P ) ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) |
|
| 13 | 4 5 11 12 | syl3anc | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) = ( P ` 0 ) ) |
| 14 | 3 13 | eqtr4d | |- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( lastS ` ( P ++ <" ( P ` 0 ) "> ) ) = ( ( P ++ <" ( P ` 0 ) "> ) ` 0 ) ) |