This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the symbol of the first singleton word of a word concatenated with this singleton word and another singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof shortened by AV, 1-May-2020) (Revised by AV, 1-May-2020) (Revised by AV, 29-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatw2s1p1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝑁 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatws1cl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ) |
| 3 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 4 | fzonn0p1 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ♯ ‘ 𝑊 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
| 7 | simpr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ♯ ‘ 𝑊 ) = 𝑁 ) | |
| 8 | 7 | eqcomd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → 𝑁 = ( ♯ ‘ 𝑊 ) ) |
| 9 | ccatws1len | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
| 12 | 6 8 11 | 3eltr4d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) ) |
| 14 | ccats1val1 | ⊢ ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ) ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝑁 ) = ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ) | |
| 15 | 2 13 14 | syl2anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝑁 ) = ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) ) |
| 16 | simp1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ Word 𝑉 ) | |
| 17 | simp3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 18 | eqcom | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 ↔ 𝑁 = ( ♯ ‘ 𝑊 ) ) | |
| 19 | 18 | biimpi | ⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → 𝑁 = ( ♯ ‘ 𝑊 ) ) |
| 20 | 19 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → 𝑁 = ( ♯ ‘ 𝑊 ) ) |
| 21 | ccats1val2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 = ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) = 𝑋 ) | |
| 22 | 16 17 20 21 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ‘ 𝑁 ) = 𝑋 ) |
| 23 | 15 22 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝑁 ) = 𝑋 ) |