This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018) (Proof shortened by AV, 1-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lswccatn0lsw | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( lastS ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatlen | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 2 | 1 | oveq1d | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) = ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) = ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) ) |
| 4 | lencl | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 5 | 4 | nn0zd | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 6 | lennncl | ⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) | |
| 7 | simpl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) | |
| 8 | nnz | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → ( ♯ ‘ 𝐵 ) ∈ ℤ ) | |
| 9 | zaddcl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
| 11 | zre | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℤ → ( ♯ ‘ 𝐴 ) ∈ ℝ ) | |
| 12 | nnrp | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → ( ♯ ‘ 𝐵 ) ∈ ℝ+ ) | |
| 13 | ltaddrp | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ+ ) → ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 15 | 7 10 14 | 3jca | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 16 | 5 6 15 | syl2an | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ ( 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 17 | 16 | 3impb | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 18 | fzolb | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 20 | fzoend | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 22 | 3 21 | eqeltrd | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 23 | ccatval2 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) = ( 𝐵 ‘ ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) ) ) | |
| 24 | 22 23 | syld3an3 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) = ( 𝐵 ‘ ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
| 25 | 2 | oveq1d | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) ) |
| 26 | 4 | nn0cnd | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 27 | lencl | ⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 28 | 27 | nn0cnd | ⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 29 | addcl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℂ ) | |
| 30 | 1cnd | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → 1 ∈ ℂ ) | |
| 31 | simpl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) | |
| 32 | 29 30 31 | sub32d | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − ( ♯ ‘ 𝐴 ) ) − 1 ) ) |
| 33 | pncan2 | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − ( ♯ ‘ 𝐴 ) ) = ( ♯ ‘ 𝐵 ) ) | |
| 34 | 33 | oveq1d | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − ( ♯ ‘ 𝐴 ) ) − 1 ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 35 | 32 34 | eqtrd | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 36 | 26 28 35 | syl2an | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 37 | 25 36 | eqtrd | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 38 | 37 | 3adant3 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
| 39 | 38 | fveq2d | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( 𝐵 ‘ ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 40 | 24 39 | eqtrd | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 41 | ovex | ⊢ ( 𝐴 ++ 𝐵 ) ∈ V | |
| 42 | lsw | ⊢ ( ( 𝐴 ++ 𝐵 ) ∈ V → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) ) | |
| 43 | 41 42 | mp1i | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) ) |
| 44 | lsw | ⊢ ( 𝐵 ∈ Word 𝑉 → ( lastS ‘ 𝐵 ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) | |
| 45 | 44 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( lastS ‘ 𝐵 ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
| 46 | 40 43 45 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( lastS ‘ 𝐵 ) ) |