This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018) (Proof shortened by AV, 1-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lswccatn0lsw | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( lastS ` ( A ++ B ) ) = ( lastS ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatlen | |- ( ( A e. Word V /\ B e. Word V ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
|
| 2 | 1 | oveq1d | |- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) |
| 3 | 2 | 3adant3 | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) |
| 4 | lencl | |- ( A e. Word V -> ( # ` A ) e. NN0 ) |
|
| 5 | 4 | nn0zd | |- ( A e. Word V -> ( # ` A ) e. ZZ ) |
| 6 | lennncl | |- ( ( B e. Word V /\ B =/= (/) ) -> ( # ` B ) e. NN ) |
|
| 7 | simpl | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( # ` A ) e. ZZ ) |
|
| 8 | nnz | |- ( ( # ` B ) e. NN -> ( # ` B ) e. ZZ ) |
|
| 9 | zaddcl | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
|
| 10 | 8 9 | sylan2 | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 11 | zre | |- ( ( # ` A ) e. ZZ -> ( # ` A ) e. RR ) |
|
| 12 | nnrp | |- ( ( # ` B ) e. NN -> ( # ` B ) e. RR+ ) |
|
| 13 | ltaddrp | |- ( ( ( # ` A ) e. RR /\ ( # ` B ) e. RR+ ) -> ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) |
| 15 | 7 10 14 | 3jca | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 16 | 5 6 15 | syl2an | |- ( ( A e. Word V /\ ( B e. Word V /\ B =/= (/) ) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 17 | 16 | 3impb | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 18 | fzolb | |- ( ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
|
| 19 | 17 18 | sylibr | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 20 | fzoend | |- ( ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) -> ( ( ( # ` A ) + ( # ` B ) ) - 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
|
| 21 | 19 20 | syl | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( ( # ` A ) + ( # ` B ) ) - 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 22 | 3 21 | eqeltrd | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( # ` ( A ++ B ) ) - 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 23 | ccatval2 | |- ( ( A e. Word V /\ B e. Word V /\ ( ( # ` ( A ++ B ) ) - 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` ( ( # ` ( A ++ B ) ) - 1 ) ) = ( B ` ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) ) ) |
|
| 24 | 22 23 | syld3an3 | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` ( A ++ B ) ) - 1 ) ) = ( B ` ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) ) ) |
| 25 | 2 | oveq1d | |- ( ( A e. Word V /\ B e. Word V ) -> ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) = ( ( ( ( # ` A ) + ( # ` B ) ) - 1 ) - ( # ` A ) ) ) |
| 26 | 4 | nn0cnd | |- ( A e. Word V -> ( # ` A ) e. CC ) |
| 27 | lencl | |- ( B e. Word V -> ( # ` B ) e. NN0 ) |
|
| 28 | 27 | nn0cnd | |- ( B e. Word V -> ( # ` B ) e. CC ) |
| 29 | addcl | |- ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( ( # ` A ) + ( # ` B ) ) e. CC ) |
|
| 30 | 1cnd | |- ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> 1 e. CC ) |
|
| 31 | simpl | |- ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( # ` A ) e. CC ) |
|
| 32 | 29 30 31 | sub32d | |- ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( ( ( ( # ` A ) + ( # ` B ) ) - 1 ) - ( # ` A ) ) = ( ( ( ( # ` A ) + ( # ` B ) ) - ( # ` A ) ) - 1 ) ) |
| 33 | pncan2 | |- ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( ( ( # ` A ) + ( # ` B ) ) - ( # ` A ) ) = ( # ` B ) ) |
|
| 34 | 33 | oveq1d | |- ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( ( ( ( # ` A ) + ( # ` B ) ) - ( # ` A ) ) - 1 ) = ( ( # ` B ) - 1 ) ) |
| 35 | 32 34 | eqtrd | |- ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC ) -> ( ( ( ( # ` A ) + ( # ` B ) ) - 1 ) - ( # ` A ) ) = ( ( # ` B ) - 1 ) ) |
| 36 | 26 28 35 | syl2an | |- ( ( A e. Word V /\ B e. Word V ) -> ( ( ( ( # ` A ) + ( # ` B ) ) - 1 ) - ( # ` A ) ) = ( ( # ` B ) - 1 ) ) |
| 37 | 25 36 | eqtrd | |- ( ( A e. Word V /\ B e. Word V ) -> ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) = ( ( # ` B ) - 1 ) ) |
| 38 | 37 | 3adant3 | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) = ( ( # ` B ) - 1 ) ) |
| 39 | 38 | fveq2d | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( B ` ( ( ( # ` ( A ++ B ) ) - 1 ) - ( # ` A ) ) ) = ( B ` ( ( # ` B ) - 1 ) ) ) |
| 40 | 24 39 | eqtrd | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` ( A ++ B ) ) - 1 ) ) = ( B ` ( ( # ` B ) - 1 ) ) ) |
| 41 | ovex | |- ( A ++ B ) e. _V |
|
| 42 | lsw | |- ( ( A ++ B ) e. _V -> ( lastS ` ( A ++ B ) ) = ( ( A ++ B ) ` ( ( # ` ( A ++ B ) ) - 1 ) ) ) |
|
| 43 | 41 42 | mp1i | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( lastS ` ( A ++ B ) ) = ( ( A ++ B ) ` ( ( # ` ( A ++ B ) ) - 1 ) ) ) |
| 44 | lsw | |- ( B e. Word V -> ( lastS ` B ) = ( B ` ( ( # ` B ) - 1 ) ) ) |
|
| 45 | 44 | 3ad2ant2 | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( lastS ` B ) = ( B ` ( ( # ` B ) - 1 ) ) ) |
| 46 | 40 43 45 | 3eqtr4d | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( lastS ` ( A ++ B ) ) = ( lastS ` B ) ) |