This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of negative vectors in a subspace. (Contributed by Stefan O'Rear, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssvnegcl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| lssvnegcl.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | ||
| Assertion | lssvnegcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvnegcl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | lssvnegcl.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 4 | 3 1 | lssel | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( Base ‘ 𝑊 ) ) |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 8 | eqid | ⊢ ( invg ‘ ( Scalar ‘ 𝑊 ) ) = ( invg ‘ ( Scalar ‘ 𝑊 ) ) | |
| 9 | 3 2 5 6 7 8 | lmodvneg1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| 10 | 4 9 | sylan2 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| 11 | 10 | 3impb | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| 12 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑊 ∈ LMod ) | |
| 13 | simp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) | |
| 14 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 15 | 5 | lmodring | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 17 | 16 | ringgrpd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 18 | 14 7 | ringidcl | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 19 | 16 18 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 20 | 14 8 17 19 | grpinvcld | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 21 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) | |
| 22 | 5 6 14 1 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑋 ∈ 𝑈 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
| 23 | 12 13 20 21 22 | syl22anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
| 24 | 11 23 | eqeltrrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝑈 ) |