This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of negative vectors in a subspace. (Contributed by Stefan O'Rear, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssvnegcl.s | |- S = ( LSubSp ` W ) |
|
| lssvnegcl.n | |- N = ( invg ` W ) |
||
| Assertion | lssvnegcl | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` X ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvnegcl.s | |- S = ( LSubSp ` W ) |
|
| 2 | lssvnegcl.n | |- N = ( invg ` W ) |
|
| 3 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 4 | 3 1 | lssel | |- ( ( U e. S /\ X e. U ) -> X e. ( Base ` W ) ) |
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 7 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 8 | eqid | |- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
|
| 9 | 3 2 5 6 7 8 | lmodvneg1 | |- ( ( W e. LMod /\ X e. ( Base ` W ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) = ( N ` X ) ) |
| 10 | 4 9 | sylan2 | |- ( ( W e. LMod /\ ( U e. S /\ X e. U ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) = ( N ` X ) ) |
| 11 | 10 | 3impb | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) = ( N ` X ) ) |
| 12 | simp1 | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> W e. LMod ) |
|
| 13 | simp2 | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> U e. S ) |
|
| 14 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 15 | 5 | lmodring | |- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
| 16 | 15 | 3ad2ant1 | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( Scalar ` W ) e. Ring ) |
| 17 | 16 | ringgrpd | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( Scalar ` W ) e. Grp ) |
| 18 | 14 7 | ringidcl | |- ( ( Scalar ` W ) e. Ring -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 19 | 16 18 | syl | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 20 | 14 8 17 19 | grpinvcld | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 21 | simp3 | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> X e. U ) |
|
| 22 | 5 6 14 1 | lssvscl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ X e. U ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) e. U ) |
| 23 | 12 13 20 21 22 | syl22anc | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) e. U ) |
| 24 | 11 23 | eqeltrrd | |- ( ( W e. LMod /\ U e. S /\ X e. U ) -> ( N ` X ) e. U ) |