This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 . Can it be used along with lspsnne1 , lspsnne2 to shorten this proof? (Contributed by NM, 14-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssvancl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lssvancl.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lssvancl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lssvancl.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lssvancl.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lssvancl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| lssvancl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lssvancl.n | ⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝑈 ) | ||
| Assertion | lssvancl1 | ⊢ ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvancl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lssvancl.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lssvancl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 4 | lssvancl.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lssvancl.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 6 | lssvancl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 7 | lssvancl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 8 | lssvancl.n | ⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝑈 ) | |
| 9 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 11 | 1 3 | lssel | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 12 | 5 6 11 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 13 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 14 | 1 2 13 | ablpncan2 | ⊢ ( ( 𝑊 ∈ Abel ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) = 𝑌 ) |
| 15 | 10 12 7 14 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) = 𝑌 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) = 𝑌 ) |
| 17 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 18 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 19 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → ( 𝑋 + 𝑌 ) ∈ 𝑈 ) | |
| 20 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
| 21 | 13 3 | lssvsubcl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( ( 𝑋 + 𝑌 ) ∈ 𝑈 ∧ 𝑋 ∈ 𝑈 ) ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
| 22 | 17 18 19 20 21 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
| 23 | 16 22 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
| 24 | 8 23 | mtand | ⊢ ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) |