This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express that vectors have different spans. (Contributed by NM, 20-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnne2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsnne2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsnne2.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspsnne2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspsnne2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspsnne2.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| Assertion | lspsnne2 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnne2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsnne2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lspsnne2.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 4 | lspsnne2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 5 | lspsnne2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 6 | lspsnne2.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 7 | eqimss | ⊢ ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 8 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 9 | 1 8 2 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 10 | 3 5 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 | 1 8 2 3 10 4 | ellspsn5b | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 12 | 7 11 | imbitrrid | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 13 | 12 | necon3bd | ⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 14 | 6 13 | mpd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |