This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 20-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssvancl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lssvancl.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lssvancl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lssvancl.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lssvancl.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lssvancl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| lssvancl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lssvancl.n | ⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝑈 ) | ||
| Assertion | lssvancl2 | ⊢ ( 𝜑 → ¬ ( 𝑌 + 𝑋 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvancl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lssvancl.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lssvancl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 4 | lssvancl.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lssvancl.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 6 | lssvancl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 7 | lssvancl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 8 | lssvancl.n | ⊢ ( 𝜑 → ¬ 𝑌 ∈ 𝑈 ) | |
| 9 | 1 3 | lssel | ⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 10 | 5 6 9 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 11 | 1 2 | lmodcom | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 12 | 4 10 7 11 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 13 | 1 2 3 4 5 6 7 8 | lssvancl1 | ⊢ ( 𝜑 → ¬ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) |
| 14 | 12 13 | eqneltrrd | ⊢ ( 𝜑 → ¬ ( 𝑌 + 𝑋 ) ∈ 𝑈 ) |