This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express that vectors have different spans. (Contributed by NM, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnne1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsnne1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspsnne1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsnne1.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspsnne1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
| lspsnne1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspsnne1.e | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| Assertion | lspsnne1 | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnne1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsnne1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspsnne1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspsnne1.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspsnne1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | |
| 6 | lspsnne1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | lspsnne1.e | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 8 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 9 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 11 | 1 8 3 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 | 10 6 11 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 13 | 5 | eldifad | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 14 | 1 8 3 10 12 13 | ellspsn5b | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 15 | 14 | notbid | ⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 16 | 1 2 3 4 5 6 | lspsncmp | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 17 | 16 | necon3bbid | ⊢ ( 𝜑 → ( ¬ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 18 | 15 17 | bitrd | ⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 19 | 7 18 | mpbird | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |