This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Independence of 2 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspindp3.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspindp3.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lspindp3.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspindp3.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspindp3.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspindp3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspindp3.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
| lspindp3.e | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| Assertion | lspindp3 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspindp3.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspindp3.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lspindp3.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | lspindp3.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 5 | lspindp3.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 6 | lspindp3.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 7 | lspindp3.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | |
| 8 | lspindp3.e | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 9 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) → 𝑊 ∈ LVec ) |
| 10 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) → 𝑋 ∈ 𝑉 ) |
| 11 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) | |
| 13 | 1 2 3 4 9 10 11 12 | lspabs2 | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 14 | 13 | ex | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 15 | 14 | necon3d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 16 | 8 15 | mpd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |