This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 . Can it be used along with lspsnne1 , lspsnne2 to shorten this proof? (Contributed by NM, 14-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssvancl.v | |- V = ( Base ` W ) |
|
| lssvancl.p | |- .+ = ( +g ` W ) |
||
| lssvancl.s | |- S = ( LSubSp ` W ) |
||
| lssvancl.w | |- ( ph -> W e. LMod ) |
||
| lssvancl.u | |- ( ph -> U e. S ) |
||
| lssvancl.x | |- ( ph -> X e. U ) |
||
| lssvancl.y | |- ( ph -> Y e. V ) |
||
| lssvancl.n | |- ( ph -> -. Y e. U ) |
||
| Assertion | lssvancl1 | |- ( ph -> -. ( X .+ Y ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvancl.v | |- V = ( Base ` W ) |
|
| 2 | lssvancl.p | |- .+ = ( +g ` W ) |
|
| 3 | lssvancl.s | |- S = ( LSubSp ` W ) |
|
| 4 | lssvancl.w | |- ( ph -> W e. LMod ) |
|
| 5 | lssvancl.u | |- ( ph -> U e. S ) |
|
| 6 | lssvancl.x | |- ( ph -> X e. U ) |
|
| 7 | lssvancl.y | |- ( ph -> Y e. V ) |
|
| 8 | lssvancl.n | |- ( ph -> -. Y e. U ) |
|
| 9 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
| 10 | 4 9 | syl | |- ( ph -> W e. Abel ) |
| 11 | 1 3 | lssel | |- ( ( U e. S /\ X e. U ) -> X e. V ) |
| 12 | 5 6 11 | syl2anc | |- ( ph -> X e. V ) |
| 13 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 14 | 1 2 13 | ablpncan2 | |- ( ( W e. Abel /\ X e. V /\ Y e. V ) -> ( ( X .+ Y ) ( -g ` W ) X ) = Y ) |
| 15 | 10 12 7 14 | syl3anc | |- ( ph -> ( ( X .+ Y ) ( -g ` W ) X ) = Y ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( X .+ Y ) e. U ) -> ( ( X .+ Y ) ( -g ` W ) X ) = Y ) |
| 17 | 4 | adantr | |- ( ( ph /\ ( X .+ Y ) e. U ) -> W e. LMod ) |
| 18 | 5 | adantr | |- ( ( ph /\ ( X .+ Y ) e. U ) -> U e. S ) |
| 19 | simpr | |- ( ( ph /\ ( X .+ Y ) e. U ) -> ( X .+ Y ) e. U ) |
|
| 20 | 6 | adantr | |- ( ( ph /\ ( X .+ Y ) e. U ) -> X e. U ) |
| 21 | 13 3 | lssvsubcl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( ( X .+ Y ) e. U /\ X e. U ) ) -> ( ( X .+ Y ) ( -g ` W ) X ) e. U ) |
| 22 | 17 18 19 20 21 | syl22anc | |- ( ( ph /\ ( X .+ Y ) e. U ) -> ( ( X .+ Y ) ( -g ` W ) X ) e. U ) |
| 23 | 16 22 | eqeltrrd | |- ( ( ph /\ ( X .+ Y ) e. U ) -> Y e. U ) |
| 24 | 8 23 | mtand | |- ( ph -> -. ( X .+ Y ) e. U ) |