This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of lsslsp as of 25-Apr-2025. Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014) TODO: Shouldn't we swap MG and NG since we are computing a property of NG ? (Like we say sin 0 = 0 and not 0 = sin 0.) - NM 15-Mar-2015. (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsslsp.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| lsslsp.m | ⊢ 𝑀 = ( LSpan ‘ 𝑊 ) | ||
| lsslsp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑋 ) | ||
| lsslsp.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lsslspOLD | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑀 ‘ 𝐺 ) = ( 𝑁 ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsslsp.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | lsslsp.m | ⊢ 𝑀 = ( LSpan ‘ 𝑊 ) | |
| 3 | lsslsp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑋 ) | |
| 4 | lsslsp.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 5 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝑊 ∈ LMod ) | |
| 6 | 1 4 | lsslmod | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → 𝑋 ∈ LMod ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝑋 ∈ LMod ) |
| 8 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝐺 ⊆ 𝑈 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 10 | 9 4 | lssss | ⊢ ( 𝑈 ∈ 𝐿 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 12 | 1 9 | ressbas2 | ⊢ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 13 | 11 12 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 14 | 8 13 | sseqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝐺 ⊆ ( Base ‘ 𝑋 ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 16 | eqid | ⊢ ( LSubSp ‘ 𝑋 ) = ( LSubSp ‘ 𝑋 ) | |
| 17 | 15 16 3 | lspcl | ⊢ ( ( 𝑋 ∈ LMod ∧ 𝐺 ⊆ ( Base ‘ 𝑋 ) ) → ( 𝑁 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ) |
| 18 | 7 14 17 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ) |
| 19 | 1 4 16 | lsslss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → ( ( 𝑁 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ↔ ( ( 𝑁 ‘ 𝐺 ) ∈ 𝐿 ∧ ( 𝑁 ‘ 𝐺 ) ⊆ 𝑈 ) ) ) |
| 20 | 19 | 3adant3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( ( 𝑁 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ↔ ( ( 𝑁 ‘ 𝐺 ) ∈ 𝐿 ∧ ( 𝑁 ‘ 𝐺 ) ⊆ 𝑈 ) ) ) |
| 21 | 18 20 | mpbid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( ( 𝑁 ‘ 𝐺 ) ∈ 𝐿 ∧ ( 𝑁 ‘ 𝐺 ) ⊆ 𝑈 ) ) |
| 22 | 21 | simpld | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝐺 ) ∈ 𝐿 ) |
| 23 | 15 3 | lspssid | ⊢ ( ( 𝑋 ∈ LMod ∧ 𝐺 ⊆ ( Base ‘ 𝑋 ) ) → 𝐺 ⊆ ( 𝑁 ‘ 𝐺 ) ) |
| 24 | 7 14 23 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝐺 ⊆ ( 𝑁 ‘ 𝐺 ) ) |
| 25 | 4 2 | lspssp | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝐺 ) ∈ 𝐿 ∧ 𝐺 ⊆ ( 𝑁 ‘ 𝐺 ) ) → ( 𝑀 ‘ 𝐺 ) ⊆ ( 𝑁 ‘ 𝐺 ) ) |
| 26 | 5 22 24 25 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑀 ‘ 𝐺 ) ⊆ ( 𝑁 ‘ 𝐺 ) ) |
| 27 | 8 11 | sstrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝐺 ⊆ ( Base ‘ 𝑊 ) ) |
| 28 | 9 4 2 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ⊆ ( Base ‘ 𝑊 ) ) → ( 𝑀 ‘ 𝐺 ) ∈ 𝐿 ) |
| 29 | 5 27 28 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑀 ‘ 𝐺 ) ∈ 𝐿 ) |
| 30 | 4 2 | lspssp | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑀 ‘ 𝐺 ) ⊆ 𝑈 ) |
| 31 | 1 4 16 | lsslss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ) → ( ( 𝑀 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ↔ ( ( 𝑀 ‘ 𝐺 ) ∈ 𝐿 ∧ ( 𝑀 ‘ 𝐺 ) ⊆ 𝑈 ) ) ) |
| 32 | 31 | 3adant3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( ( 𝑀 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ↔ ( ( 𝑀 ‘ 𝐺 ) ∈ 𝐿 ∧ ( 𝑀 ‘ 𝐺 ) ⊆ 𝑈 ) ) ) |
| 33 | 29 30 32 | mpbir2and | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑀 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ) |
| 34 | 9 2 | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ⊆ ( Base ‘ 𝑊 ) ) → 𝐺 ⊆ ( 𝑀 ‘ 𝐺 ) ) |
| 35 | 5 27 34 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → 𝐺 ⊆ ( 𝑀 ‘ 𝐺 ) ) |
| 36 | 16 3 | lspssp | ⊢ ( ( 𝑋 ∈ LMod ∧ ( 𝑀 ‘ 𝐺 ) ∈ ( LSubSp ‘ 𝑋 ) ∧ 𝐺 ⊆ ( 𝑀 ‘ 𝐺 ) ) → ( 𝑁 ‘ 𝐺 ) ⊆ ( 𝑀 ‘ 𝐺 ) ) |
| 37 | 7 33 35 36 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑁 ‘ 𝐺 ) ⊆ ( 𝑀 ‘ 𝐺 ) ) |
| 38 | 26 37 | eqssd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ 𝐺 ⊆ 𝑈 ) → ( 𝑀 ‘ 𝐺 ) = ( 𝑁 ‘ 𝐺 ) ) |