This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of lsslsp as of 25-Apr-2025. Spans in submodules correspond to spans in the containing module. (Contributed by Stefan O'Rear, 12-Dec-2014) TODO: Shouldn't we swap MG and NG since we are computing a property of NG ? (Like we say sin 0 = 0 and not 0 = sin 0.) - NM 15-Mar-2015. (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsslsp.x | |- X = ( W |`s U ) |
|
| lsslsp.m | |- M = ( LSpan ` W ) |
||
| lsslsp.n | |- N = ( LSpan ` X ) |
||
| lsslsp.l | |- L = ( LSubSp ` W ) |
||
| Assertion | lsslspOLD | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( M ` G ) = ( N ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsslsp.x | |- X = ( W |`s U ) |
|
| 2 | lsslsp.m | |- M = ( LSpan ` W ) |
|
| 3 | lsslsp.n | |- N = ( LSpan ` X ) |
|
| 4 | lsslsp.l | |- L = ( LSubSp ` W ) |
|
| 5 | simp1 | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> W e. LMod ) |
|
| 6 | 1 4 | lsslmod | |- ( ( W e. LMod /\ U e. L ) -> X e. LMod ) |
| 7 | 6 | 3adant3 | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> X e. LMod ) |
| 8 | simp3 | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> G C_ U ) |
|
| 9 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 10 | 9 4 | lssss | |- ( U e. L -> U C_ ( Base ` W ) ) |
| 11 | 10 | 3ad2ant2 | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> U C_ ( Base ` W ) ) |
| 12 | 1 9 | ressbas2 | |- ( U C_ ( Base ` W ) -> U = ( Base ` X ) ) |
| 13 | 11 12 | syl | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> U = ( Base ` X ) ) |
| 14 | 8 13 | sseqtrd | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> G C_ ( Base ` X ) ) |
| 15 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 16 | eqid | |- ( LSubSp ` X ) = ( LSubSp ` X ) |
|
| 17 | 15 16 3 | lspcl | |- ( ( X e. LMod /\ G C_ ( Base ` X ) ) -> ( N ` G ) e. ( LSubSp ` X ) ) |
| 18 | 7 14 17 | syl2anc | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( N ` G ) e. ( LSubSp ` X ) ) |
| 19 | 1 4 16 | lsslss | |- ( ( W e. LMod /\ U e. L ) -> ( ( N ` G ) e. ( LSubSp ` X ) <-> ( ( N ` G ) e. L /\ ( N ` G ) C_ U ) ) ) |
| 20 | 19 | 3adant3 | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( ( N ` G ) e. ( LSubSp ` X ) <-> ( ( N ` G ) e. L /\ ( N ` G ) C_ U ) ) ) |
| 21 | 18 20 | mpbid | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( ( N ` G ) e. L /\ ( N ` G ) C_ U ) ) |
| 22 | 21 | simpld | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( N ` G ) e. L ) |
| 23 | 15 3 | lspssid | |- ( ( X e. LMod /\ G C_ ( Base ` X ) ) -> G C_ ( N ` G ) ) |
| 24 | 7 14 23 | syl2anc | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> G C_ ( N ` G ) ) |
| 25 | 4 2 | lspssp | |- ( ( W e. LMod /\ ( N ` G ) e. L /\ G C_ ( N ` G ) ) -> ( M ` G ) C_ ( N ` G ) ) |
| 26 | 5 22 24 25 | syl3anc | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( M ` G ) C_ ( N ` G ) ) |
| 27 | 8 11 | sstrd | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> G C_ ( Base ` W ) ) |
| 28 | 9 4 2 | lspcl | |- ( ( W e. LMod /\ G C_ ( Base ` W ) ) -> ( M ` G ) e. L ) |
| 29 | 5 27 28 | syl2anc | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( M ` G ) e. L ) |
| 30 | 4 2 | lspssp | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( M ` G ) C_ U ) |
| 31 | 1 4 16 | lsslss | |- ( ( W e. LMod /\ U e. L ) -> ( ( M ` G ) e. ( LSubSp ` X ) <-> ( ( M ` G ) e. L /\ ( M ` G ) C_ U ) ) ) |
| 32 | 31 | 3adant3 | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( ( M ` G ) e. ( LSubSp ` X ) <-> ( ( M ` G ) e. L /\ ( M ` G ) C_ U ) ) ) |
| 33 | 29 30 32 | mpbir2and | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( M ` G ) e. ( LSubSp ` X ) ) |
| 34 | 9 2 | lspssid | |- ( ( W e. LMod /\ G C_ ( Base ` W ) ) -> G C_ ( M ` G ) ) |
| 35 | 5 27 34 | syl2anc | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> G C_ ( M ` G ) ) |
| 36 | 16 3 | lspssp | |- ( ( X e. LMod /\ ( M ` G ) e. ( LSubSp ` X ) /\ G C_ ( M ` G ) ) -> ( N ` G ) C_ ( M ` G ) ) |
| 37 | 7 33 35 36 | syl3anc | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( N ` G ) C_ ( M ` G ) ) |
| 38 | 26 37 | eqssd | |- ( ( W e. LMod /\ U e. L /\ G C_ U ) -> ( M ` G ) = ( N ` G ) ) |