This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a set of vectors (in a left module). ( spanval analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspval | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) = ∩ { 𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | 1 2 3 | lspfval | ⊢ ( 𝑊 ∈ LMod → 𝑁 = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 5 | 4 | fveq1d | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ 𝑈 ) = ( ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) ‘ 𝑈 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) = ( ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) ‘ 𝑈 ) ) |
| 7 | eqid | ⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) | |
| 8 | sseq1 | ⊢ ( 𝑠 = 𝑈 → ( 𝑠 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑡 ) ) | |
| 9 | 8 | rabbidv | ⊢ ( 𝑠 = 𝑈 → { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } = { 𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡 } ) |
| 10 | 9 | inteqd | ⊢ ( 𝑠 = 𝑈 → ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } = ∩ { 𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡 } ) |
| 11 | simpr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ 𝑉 ) | |
| 12 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 13 | 12 | elpw2 | ⊢ ( 𝑈 ∈ 𝒫 𝑉 ↔ 𝑈 ⊆ 𝑉 ) |
| 14 | 11 13 | sylibr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ∈ 𝒫 𝑉 ) |
| 15 | 1 2 | lss1 | ⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ 𝑆 ) |
| 16 | sseq2 | ⊢ ( 𝑡 = 𝑉 → ( 𝑈 ⊆ 𝑡 ↔ 𝑈 ⊆ 𝑉 ) ) | |
| 17 | 16 | rspcev | ⊢ ( ( 𝑉 ∈ 𝑆 ∧ 𝑈 ⊆ 𝑉 ) → ∃ 𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡 ) |
| 18 | 15 17 | sylan | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ∃ 𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡 ) |
| 19 | intexrab | ⊢ ( ∃ 𝑡 ∈ 𝑆 𝑈 ⊆ 𝑡 ↔ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡 } ∈ V ) | |
| 20 | 18 19 | sylib | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ∩ { 𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡 } ∈ V ) |
| 21 | 7 10 14 20 | fvmptd3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) ‘ 𝑈 ) = ∩ { 𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡 } ) |
| 22 | 6 21 | eqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) = ∩ { 𝑡 ∈ 𝑆 ∣ 𝑈 ⊆ 𝑡 } ) |