This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span function for a left vector space (or a left module). ( df-span analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspfval | ⊢ ( 𝑊 ∈ 𝑋 → 𝑁 = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | elex | ⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) | |
| 5 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 7 | 6 | pweqd | ⊢ ( 𝑤 = 𝑊 → 𝒫 ( Base ‘ 𝑤 ) = 𝒫 𝑉 ) |
| 8 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = ( LSubSp ‘ 𝑊 ) ) | |
| 9 | 8 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = 𝑆 ) |
| 10 | 9 | rabeqdv | ⊢ ( 𝑤 = 𝑊 → { 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∣ 𝑠 ⊆ 𝑡 } = { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) |
| 11 | 10 | inteqd | ⊢ ( 𝑤 = 𝑊 → ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∣ 𝑠 ⊆ 𝑡 } = ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) |
| 12 | 7 11 | mpteq12dv | ⊢ ( 𝑤 = 𝑊 → ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∣ 𝑠 ⊆ 𝑡 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 13 | df-lsp | ⊢ LSpan = ( 𝑤 ∈ V ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝑤 ) ∣ 𝑠 ⊆ 𝑡 } ) ) | |
| 14 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 15 | 14 | pwex | ⊢ 𝒫 𝑉 ∈ V |
| 16 | 15 | mptex | ⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) ∈ V |
| 17 | 12 13 16 | fvmpt | ⊢ ( 𝑊 ∈ V → ( LSpan ‘ 𝑊 ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 18 | 4 17 | syl | ⊢ ( 𝑊 ∈ 𝑋 → ( LSpan ‘ 𝑊 ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 19 | 3 18 | eqtrid | ⊢ ( 𝑊 ∈ 𝑋 → 𝑁 = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑡 } ) ) |