This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a set of vectors (in a left module). ( spanval analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspval.v | |- V = ( Base ` W ) |
|
| lspval.s | |- S = ( LSubSp ` W ) |
||
| lspval.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspval | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) = |^| { t e. S | U C_ t } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | |- V = ( Base ` W ) |
|
| 2 | lspval.s | |- S = ( LSubSp ` W ) |
|
| 3 | lspval.n | |- N = ( LSpan ` W ) |
|
| 4 | 1 2 3 | lspfval | |- ( W e. LMod -> N = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ) |
| 5 | 4 | fveq1d | |- ( W e. LMod -> ( N ` U ) = ( ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ` U ) ) |
| 6 | 5 | adantr | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) = ( ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ` U ) ) |
| 7 | eqid | |- ( s e. ~P V |-> |^| { t e. S | s C_ t } ) = ( s e. ~P V |-> |^| { t e. S | s C_ t } ) |
|
| 8 | sseq1 | |- ( s = U -> ( s C_ t <-> U C_ t ) ) |
|
| 9 | 8 | rabbidv | |- ( s = U -> { t e. S | s C_ t } = { t e. S | U C_ t } ) |
| 10 | 9 | inteqd | |- ( s = U -> |^| { t e. S | s C_ t } = |^| { t e. S | U C_ t } ) |
| 11 | simpr | |- ( ( W e. LMod /\ U C_ V ) -> U C_ V ) |
|
| 12 | 1 | fvexi | |- V e. _V |
| 13 | 12 | elpw2 | |- ( U e. ~P V <-> U C_ V ) |
| 14 | 11 13 | sylibr | |- ( ( W e. LMod /\ U C_ V ) -> U e. ~P V ) |
| 15 | 1 2 | lss1 | |- ( W e. LMod -> V e. S ) |
| 16 | sseq2 | |- ( t = V -> ( U C_ t <-> U C_ V ) ) |
|
| 17 | 16 | rspcev | |- ( ( V e. S /\ U C_ V ) -> E. t e. S U C_ t ) |
| 18 | 15 17 | sylan | |- ( ( W e. LMod /\ U C_ V ) -> E. t e. S U C_ t ) |
| 19 | intexrab | |- ( E. t e. S U C_ t <-> |^| { t e. S | U C_ t } e. _V ) |
|
| 20 | 18 19 | sylib | |- ( ( W e. LMod /\ U C_ V ) -> |^| { t e. S | U C_ t } e. _V ) |
| 21 | 7 10 14 20 | fvmptd3 | |- ( ( W e. LMod /\ U C_ V ) -> ( ( s e. ~P V |-> |^| { t e. S | s C_ t } ) ` U ) = |^| { t e. S | U C_ t } ) |
| 22 | 6 21 | eqtrd | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) = |^| { t e. S | U C_ t } ) |