This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the linear span of a subset of Hilbert space. The span is the intersection of all subspaces constraining the subset. Definition of span in Schechter p. 276. (Contributed by NM, 2-Jun-2004) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spanval | ⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) = ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-span | ⊢ span = ( 𝑦 ∈ 𝒫 ℋ ↦ ∩ { 𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥 } ) | |
| 2 | sseq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥 ) ) | |
| 3 | 2 | rabbidv | ⊢ ( 𝑦 = 𝐴 → { 𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥 } = { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| 4 | 3 | inteqd | ⊢ ( 𝑦 = 𝐴 → ∩ { 𝑥 ∈ Sℋ ∣ 𝑦 ⊆ 𝑥 } = ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| 5 | ax-hilex | ⊢ ℋ ∈ V | |
| 6 | 5 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ ) |
| 7 | 6 | biimpri | ⊢ ( 𝐴 ⊆ ℋ → 𝐴 ∈ 𝒫 ℋ ) |
| 8 | helsh | ⊢ ℋ ∈ Sℋ | |
| 9 | sseq2 | ⊢ ( 𝑥 = ℋ → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ℋ ) ) | |
| 10 | 9 | rspcev | ⊢ ( ( ℋ ∈ Sℋ ∧ 𝐴 ⊆ ℋ ) → ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ) |
| 11 | 8 10 | mpan | ⊢ ( 𝐴 ⊆ ℋ → ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ) |
| 12 | intexrab | ⊢ ( ∃ 𝑥 ∈ Sℋ 𝐴 ⊆ 𝑥 ↔ ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ∈ V ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝐴 ⊆ ℋ → ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ∈ V ) |
| 14 | 1 4 7 13 | fvmptd3 | ⊢ ( 𝐴 ⊆ ℋ → ( span ‘ 𝐴 ) = ∩ { 𝑥 ∈ Sℋ ∣ 𝐴 ⊆ 𝑥 } ) |