This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparable spans of nonzero singletons are equal. (Contributed by NM, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsncmp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspsncmp.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspsncmp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspsncmp.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspsncmp.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
| lspsncmp.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lspsncmp | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsncmp.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspsncmp.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspsncmp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspsncmp.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspsncmp.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | |
| 6 | lspsncmp.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑊 ∈ LVec ) |
| 8 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
| 9 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 10 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 | 1 9 3 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 13 | 11 6 12 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 14 | 5 | eldifad | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 15 | 1 9 3 11 13 14 | ellspsn5b | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 16 | 15 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 17 | eldifsni | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) | |
| 18 | 5 17 | syl | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → 𝑋 ≠ 0 ) |
| 20 | 1 2 3 7 8 16 19 | lspsneleq | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 21 | 20 | ex | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 22 | eqimss | ⊢ ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 23 | 21 22 | impbid1 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |