This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span of a pair of vectors. (Contributed by NM, 22-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsppr.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsppr.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lsppr.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lsppr.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lsppr.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lsppr.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsppr.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lsppr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lsppr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lsppr | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsppr.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsppr.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lsppr.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lsppr.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lsppr.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | lsppr.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 7 | lsppr.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 8 | lsppr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 9 | lsppr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 10 | df-pr | ⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) | |
| 11 | 10 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) |
| 12 | 8 | snssd | ⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 13 | 9 | snssd | ⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
| 14 | 1 6 | lspun | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ∧ { 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 15 | 7 12 13 14 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 16 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 17 | 1 16 6 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 18 | 7 8 17 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 19 | 1 16 6 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 20 | 7 9 19 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 21 | eqid | ⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) | |
| 22 | 16 6 21 | lsmsp | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 23 | 7 18 20 22 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 24 | 1 2 3 4 5 21 6 7 8 9 | lsmspsn | ⊢ ( 𝜑 → ( 𝑣 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ↔ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) ) ) |
| 25 | 24 | eqabdv | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) } ) |
| 26 | 15 23 25 | 3eqtr2d | ⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) } ) |
| 27 | 11 26 | eqtrid | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑙 ∈ 𝐾 𝑣 = ( ( 𝑘 · 𝑋 ) + ( 𝑙 · 𝑌 ) ) } ) |