This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspprabs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspprabs.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lspprabs.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspprabs.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspprabs.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspprabs.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lspprabs | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprabs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspprabs.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lspprabs.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspprabs.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lspprabs.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspprabs.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 8 | 7 | lsssssubg | ⊢ ( 𝑊 ∈ LMod → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 10 | 1 7 3 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 | 4 5 10 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 | 9 11 | sseldd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 13 | 1 7 3 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 14 | 4 6 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 15 | 9 14 | sseldd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 16 | eqid | ⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) | |
| 17 | 16 | lsmub1 | ⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 18 | 12 15 17 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 19 | 7 16 | lsmcl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 20 | 4 11 14 19 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 21 | 1 3 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 22 | 4 5 21 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 23 | 1 3 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 24 | 4 6 23 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 25 | 2 16 | lsmelvali | ⊢ ( ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 26 | 12 15 22 24 25 | syl22anc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 27 | 7 3 4 20 26 | ellspsn5 | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 28 | 1 2 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
| 29 | 4 5 6 28 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
| 30 | 1 7 3 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 + 𝑌 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 31 | 4 29 30 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 32 | 9 31 | sseldd | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 33 | 9 20 | sseldd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 34 | 16 | lsmlub | ⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ↔ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 35 | 12 32 33 34 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∧ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ↔ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 36 | 18 27 35 | mpbi2and | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 37 | 16 | lsmub1 | ⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 38 | 12 32 37 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 39 | 7 16 | lsmcl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 40 | 4 11 31 39 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 41 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 42 | 1 3 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 + 𝑌 ) ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 43 | 4 29 42 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| 44 | 41 16 32 12 43 22 | lsmelvalmi | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) ∈ ( ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 45 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 46 | 4 45 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Abel ) |
| 47 | 1 2 41 | ablpncan2 | ⊢ ( ( 𝑊 ∈ Abel ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) = 𝑌 ) |
| 48 | 46 5 6 47 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) ( -g ‘ 𝑊 ) 𝑋 ) = 𝑌 ) |
| 49 | 16 | lsmcom | ⊢ ( ( 𝑊 ∈ Abel ∧ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 50 | 46 32 12 49 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 51 | 44 48 50 | 3eltr3d | ⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 52 | 7 3 4 40 51 | ellspsn5 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 53 | 9 40 | sseldd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 54 | 16 | lsmlub | ⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) ↔ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) ) |
| 55 | 12 15 53 54 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ∧ ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) ↔ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) ) |
| 56 | 38 52 55 | mpbi2and | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 57 | 36 56 | eqssd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 58 | 1 3 16 4 5 29 | lsmpr | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) ) |
| 59 | 1 3 16 4 5 6 | lsmpr | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 60 | 57 58 59 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |