This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a pair of vectors equals the sum of the spans of their singletons. (Contributed by NM, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmpr.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsmpr.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsmpr.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| lsmpr.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lsmpr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lsmpr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | lsmpr | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmpr.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsmpr.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lsmpr.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 4 | lsmpr.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lsmpr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lsmpr.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | 5 | snssd | ⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 8 | 6 | snssd | ⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
| 9 | 1 2 | lspun | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ∧ { 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 10 | 4 7 8 9 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 11 | df-pr | ⊢ { 𝑋 , 𝑌 } = ( { 𝑋 } ∪ { 𝑌 } ) | |
| 12 | 11 | fveq2i | ⊢ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( 𝑁 ‘ ( { 𝑋 } ∪ { 𝑌 } ) ) ) |
| 14 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 15 | 1 14 2 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 16 | 4 5 15 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 17 | 1 14 2 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 18 | 4 6 17 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 19 | 14 2 3 | lsmsp | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 20 | 4 16 18 19 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 21 | 10 13 20 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑌 } ) ) ) |