This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of vector subtraction in subgroup sum. (Contributed by NM, 27-Apr-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmelvalm.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| lsmelvalm.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| lsmelvalm.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmelvalm.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmelvalmi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑇 ) | ||
| lsmelvalmi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| Assertion | lsmelvalmi | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmelvalm.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 2 | lsmelvalm.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | lsmelvalm.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmelvalm.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | lsmelvalmi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑇 ) | |
| 6 | lsmelvalmi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 7 | eqidd | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) | |
| 8 | rspceov | ⊢ ( ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ∧ ( 𝑋 − 𝑌 ) = ( 𝑋 − 𝑌 ) ) → ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 − 𝑌 ) = ( 𝑥 − 𝑦 ) ) | |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 − 𝑌 ) = ( 𝑥 − 𝑦 ) ) |
| 10 | 1 2 3 4 | lsmelvalm | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 − 𝑌 ) = ( 𝑥 − 𝑦 ) ) ) |
| 11 | 9 10 | mpbird | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |