This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a vector sum is included in the span of its arguments. (Contributed by NM, 22-Feb-2014) (Proof shortened by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspvadd.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspvadd.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lspvadd.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspvadd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspvadd.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspvadd.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lspvadd.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 5 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑊 ∈ LMod ) | |
| 6 | prssi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) | |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 8 | 1 4 3 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 9 | 5 7 8 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 10 | 1 3 | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 11 | 5 7 10 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 12 | prssg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) | |
| 13 | 12 | 3adant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 14 | 11 13 | mpbird | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 15 | 2 4 | lssvacl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 16 | 5 9 14 15 | syl21anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 17 | 4 3 5 9 16 | ellspsn5 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |