This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum of spans of subsets is the span of their union. ( spanuni analog.) (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmsp2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsmsp2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsmsp2.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| Assertion | lsmsp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsp2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsmsp2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lsmsp2.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 4 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑊 ∈ LMod ) | |
| 5 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 6 | 1 5 2 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 8 | 1 5 2 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 10 | 5 2 3 | lsmsp | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ 𝑈 ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |
| 11 | 4 7 9 10 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |
| 12 | 1 2 | lspun | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |
| 13 | 11 12 | eqtr4d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |