This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspun | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑊 ∈ LMod ) | |
| 4 | simp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑇 ⊆ 𝑉 ) | |
| 5 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ 𝑉 ) | |
| 6 | 4 5 | unssd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑇 ∪ 𝑈 ) ⊆ 𝑉 ) |
| 7 | ssun1 | ⊢ 𝑇 ⊆ ( 𝑇 ∪ 𝑈 ) | |
| 8 | 7 | a1i | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑇 ⊆ ( 𝑇 ∪ 𝑈 ) ) |
| 9 | 1 2 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ 𝑉 ∧ 𝑇 ⊆ ( 𝑇 ∪ 𝑈 ) ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 10 | 3 6 8 9 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 11 | ssun2 | ⊢ 𝑈 ⊆ ( 𝑇 ∪ 𝑈 ) | |
| 12 | 11 | a1i | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝑇 ∪ 𝑈 ) ) |
| 13 | 1 2 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ 𝑉 ∧ 𝑈 ⊆ ( 𝑇 ∪ 𝑈 ) ) → ( 𝑁 ‘ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 14 | 3 6 12 13 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 15 | 10 14 | unssd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 16 | 1 2 | lspssv | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ 𝑉 ) |
| 17 | 3 6 16 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ 𝑉 ) |
| 18 | 15 17 | sstrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ⊆ 𝑉 ) |
| 19 | 1 2 | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ) → 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
| 20 | 3 4 19 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
| 21 | 1 2 | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |
| 22 | unss12 | ⊢ ( ( 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) | |
| 23 | 20 21 22 | 3imp3i2an | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑇 ∪ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) |
| 24 | 1 2 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ⊆ 𝑉 ∧ ( 𝑇 ∪ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |
| 25 | 3 18 23 24 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |
| 26 | 1 2 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ⊆ 𝑉 ∧ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) → ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ⊆ ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ) |
| 27 | 3 17 15 26 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ⊆ ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) ) |
| 28 | 1 2 | lspidm | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑇 ∪ 𝑈 ) ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 29 | 3 6 28 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 30 | 27 29 | sseqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 31 | 25 30 | eqssd | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) = ( 𝑁 ‘ ( ( 𝑁 ‘ 𝑇 ) ∪ ( 𝑁 ‘ 𝑈 ) ) ) ) |