This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum of spans of subsets is the span of their union. ( spanuni analog.) (Contributed by NM, 22-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmsp2.v | |- V = ( Base ` W ) |
|
| lsmsp2.n | |- N = ( LSpan ` W ) |
||
| lsmsp2.p | |- .(+) = ( LSSum ` W ) |
||
| Assertion | lsmsp2 | |- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( ( N ` T ) .(+) ( N ` U ) ) = ( N ` ( T u. U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsp2.v | |- V = ( Base ` W ) |
|
| 2 | lsmsp2.n | |- N = ( LSpan ` W ) |
|
| 3 | lsmsp2.p | |- .(+) = ( LSSum ` W ) |
|
| 4 | simp1 | |- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> W e. LMod ) |
|
| 5 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 6 | 1 5 2 | lspcl | |- ( ( W e. LMod /\ T C_ V ) -> ( N ` T ) e. ( LSubSp ` W ) ) |
| 7 | 6 | 3adant3 | |- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( N ` T ) e. ( LSubSp ` W ) ) |
| 8 | 1 5 2 | lspcl | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) e. ( LSubSp ` W ) ) |
| 9 | 8 | 3adant2 | |- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( N ` U ) e. ( LSubSp ` W ) ) |
| 10 | 5 2 3 | lsmsp | |- ( ( W e. LMod /\ ( N ` T ) e. ( LSubSp ` W ) /\ ( N ` U ) e. ( LSubSp ` W ) ) -> ( ( N ` T ) .(+) ( N ` U ) ) = ( N ` ( ( N ` T ) u. ( N ` U ) ) ) ) |
| 11 | 4 7 9 10 | syl3anc | |- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( ( N ` T ) .(+) ( N ` U ) ) = ( N ` ( ( N ` T ) u. ( N ` U ) ) ) ) |
| 12 | 1 2 | lspun | |- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( N ` ( T u. U ) ) = ( N ` ( ( N ` T ) u. ( N ` U ) ) ) ) |
| 13 | 11 12 | eqtr4d | |- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( ( N ` T ) .(+) ( N ` U ) ) = ( N ` ( T u. U ) ) ) |