This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum (in its extended domain) is a subset of the span of the union of its arguments. (Contributed by NM, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmsp2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsmsp2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsmsp2.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| lsmssspx.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑉 ) | ||
| lsmssspx.u | ⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) | ||
| lsmssspx.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| Assertion | lsmssspx | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsp2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsmsp2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lsmsp2.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 4 | lsmssspx.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑉 ) | |
| 5 | lsmssspx.u | ⊢ ( 𝜑 → 𝑈 ⊆ 𝑉 ) | |
| 6 | lsmssspx.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 7 | 1 2 | lspssv | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑇 ) ⊆ 𝑉 ) |
| 8 | 6 4 7 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑇 ) ⊆ 𝑉 ) |
| 9 | 1 2 | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ) → 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
| 10 | 6 4 9 | syl2anc | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
| 11 | 1 3 | lsmless1x | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑇 ) ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) ∧ 𝑇 ⊆ ( 𝑁 ‘ 𝑇 ) ) → ( 𝑇 ⊕ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ⊕ 𝑈 ) ) |
| 12 | 6 8 5 10 11 | syl31anc | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ⊕ 𝑈 ) ) |
| 13 | 1 2 | lspssv | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → ( 𝑁 ‘ 𝑈 ) ⊆ 𝑉 ) |
| 14 | 6 5 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑈 ) ⊆ 𝑉 ) |
| 15 | 1 2 | lspssid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ) → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |
| 16 | 6 5 15 | syl2anc | ⊢ ( 𝜑 → 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) |
| 17 | 1 3 | lsmless2x | ⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑇 ) ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝑈 ) ⊆ 𝑉 ) ∧ 𝑈 ⊆ ( 𝑁 ‘ 𝑈 ) ) → ( ( 𝑁 ‘ 𝑇 ) ⊕ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) ) |
| 18 | 6 8 14 16 17 | syl31anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑇 ) ⊕ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) ) |
| 19 | 12 18 | sstrd | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ⊆ ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) ) |
| 20 | 1 2 3 | lsmsp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉 ) → ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 21 | 6 4 5 20 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑇 ) ⊕ ( 𝑁 ‘ 𝑈 ) ) = ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |
| 22 | 19 21 | sseqtrd | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑁 ‘ ( 𝑇 ∪ 𝑈 ) ) ) |