This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum value (for a group or vector space). Extended domain version of lsmval . (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmfval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| lsmfval.a | ⊢ + = ( +g ‘ 𝐺 ) | ||
| lsmfval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| Assertion | lsmvalx | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | lsmfval.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | lsmfval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 4 | 1 2 3 | lsmfval | ⊢ ( 𝐺 ∈ 𝑉 → ⊕ = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) ) |
| 5 | 4 | oveqd | ⊢ ( 𝐺 ∈ 𝑉 → ( 𝑇 ⊕ 𝑈 ) = ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) ) |
| 6 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 7 | 6 | elpw2 | ⊢ ( 𝑇 ∈ 𝒫 𝐵 ↔ 𝑇 ⊆ 𝐵 ) |
| 8 | 6 | elpw2 | ⊢ ( 𝑈 ∈ 𝒫 𝐵 ↔ 𝑈 ⊆ 𝐵 ) |
| 9 | mpoexga | ⊢ ( ( 𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V ) | |
| 10 | rnexg | ⊢ ( ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V → ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ) → ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V ) |
| 12 | mpoeq12 | ⊢ ( ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) → ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) = ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) | |
| 13 | 12 | rneqd | ⊢ ( ( 𝑡 = 𝑇 ∧ 𝑢 = 𝑈 ) → ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 14 | eqid | ⊢ ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) | |
| 15 | 13 14 | ovmpoga | ⊢ ( ( 𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ∧ ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ∈ V ) → ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 16 | 11 15 | mpd3an3 | ⊢ ( ( 𝑇 ∈ 𝒫 𝐵 ∧ 𝑈 ∈ 𝒫 𝐵 ) → ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 17 | 7 8 16 | syl2anbr | ⊢ ( ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 + 𝑦 ) ) ) 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 18 | 5 17 | sylan9eq | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ( 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |
| 19 | 18 | 3impb | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 + 𝑦 ) ) ) |