This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum membership analogue of lsmelval using vector subtraction. TODO: any way to shorten proof? (Contributed by NM, 16-Mar-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmelvalm.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| lsmelvalm.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| lsmelvalm.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmelvalm.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | lsmelvalm | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 − 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmelvalm.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 2 | lsmelvalm.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | lsmelvalm.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmelvalm.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 5 2 | lsmelval | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑥 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 7 | 3 4 6 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑥 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 10 | 9 | subginvcl | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑈 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑈 ) |
| 11 | 8 10 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑈 ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 13 | subgrcl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐺 ∈ Grp ) |
| 16 | 12 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 17 | 3 16 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 18 | 17 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 20 | 12 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 21 | 8 20 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 22 | 21 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 23 | 12 5 1 9 15 19 22 | grpsubinv | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑦 − ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 24 | 23 | eqcomd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 − ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 25 | oveq2 | ⊢ ( 𝑧 = ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝑦 − 𝑧 ) = ( 𝑦 − ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | |
| 26 | 25 | rspceeqv | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑈 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 − ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) → ∃ 𝑧 ∈ 𝑈 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 − 𝑧 ) ) |
| 27 | 11 24 26 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) → ∃ 𝑧 ∈ 𝑈 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 − 𝑧 ) ) |
| 28 | eqeq1 | ⊢ ( 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) → ( 𝑋 = ( 𝑦 − 𝑧 ) ↔ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 − 𝑧 ) ) ) | |
| 29 | 28 | rexbidv | ⊢ ( 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) → ( ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 − 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑈 ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 − 𝑧 ) ) ) |
| 30 | 27 29 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) → ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 − 𝑧 ) ) ) |
| 31 | 30 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → ( ∃ 𝑥 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) → ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 − 𝑧 ) ) ) |
| 32 | 9 | subginvcl | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑧 ∈ 𝑈 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑈 ) |
| 33 | 8 32 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑧 ∈ 𝑈 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑈 ) |
| 34 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 35 | 21 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
| 36 | 12 5 9 1 | grpsubval | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 − 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 37 | 34 35 36 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑦 − 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 38 | oveq2 | ⊢ ( 𝑥 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) | |
| 39 | 38 | rspceeqv | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑈 ∧ ( 𝑦 − 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝑈 ( 𝑦 − 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 40 | 33 37 39 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑧 ∈ 𝑈 ) → ∃ 𝑥 ∈ 𝑈 ( 𝑦 − 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 41 | eqeq1 | ⊢ ( 𝑋 = ( 𝑦 − 𝑧 ) → ( 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑦 − 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) | |
| 42 | 41 | rexbidv | ⊢ ( 𝑋 = ( 𝑦 − 𝑧 ) → ( ∃ 𝑥 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑥 ∈ 𝑈 ( 𝑦 − 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 43 | 40 42 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑋 = ( 𝑦 − 𝑧 ) → ∃ 𝑥 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 44 | 43 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → ( ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 − 𝑧 ) → ∃ 𝑥 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 45 | 31 44 | impbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → ( ∃ 𝑥 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 − 𝑧 ) ) ) |
| 46 | 45 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑥 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 − 𝑧 ) ) ) |
| 47 | 7 46 | bitrd | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 − 𝑧 ) ) ) |