This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum membership analogue of lsmelval using vector subtraction. TODO: any way to shorten proof? (Contributed by NM, 16-Mar-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmelvalm.m | |- .- = ( -g ` G ) |
|
| lsmelvalm.p | |- .(+) = ( LSSum ` G ) |
||
| lsmelvalm.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lsmelvalm.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| Assertion | lsmelvalm | |- ( ph -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .- z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmelvalm.m | |- .- = ( -g ` G ) |
|
| 2 | lsmelvalm.p | |- .(+) = ( LSSum ` G ) |
|
| 3 | lsmelvalm.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | lsmelvalm.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | 5 2 | lsmelval | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( X e. ( T .(+) U ) <-> E. y e. T E. x e. U X = ( y ( +g ` G ) x ) ) ) |
| 7 | 3 4 6 | syl2anc | |- ( ph -> ( X e. ( T .(+) U ) <-> E. y e. T E. x e. U X = ( y ( +g ` G ) x ) ) ) |
| 8 | 4 | adantr | |- ( ( ph /\ y e. T ) -> U e. ( SubGrp ` G ) ) |
| 9 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 10 | 9 | subginvcl | |- ( ( U e. ( SubGrp ` G ) /\ x e. U ) -> ( ( invg ` G ) ` x ) e. U ) |
| 11 | 8 10 | sylan | |- ( ( ( ph /\ y e. T ) /\ x e. U ) -> ( ( invg ` G ) ` x ) e. U ) |
| 12 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 13 | subgrcl | |- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 14 | 3 13 | syl | |- ( ph -> G e. Grp ) |
| 15 | 14 | ad2antrr | |- ( ( ( ph /\ y e. T ) /\ x e. U ) -> G e. Grp ) |
| 16 | 12 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 17 | 3 16 | syl | |- ( ph -> T C_ ( Base ` G ) ) |
| 18 | 17 | sselda | |- ( ( ph /\ y e. T ) -> y e. ( Base ` G ) ) |
| 19 | 18 | adantr | |- ( ( ( ph /\ y e. T ) /\ x e. U ) -> y e. ( Base ` G ) ) |
| 20 | 12 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 21 | 8 20 | syl | |- ( ( ph /\ y e. T ) -> U C_ ( Base ` G ) ) |
| 22 | 21 | sselda | |- ( ( ( ph /\ y e. T ) /\ x e. U ) -> x e. ( Base ` G ) ) |
| 23 | 12 5 1 9 15 19 22 | grpsubinv | |- ( ( ( ph /\ y e. T ) /\ x e. U ) -> ( y .- ( ( invg ` G ) ` x ) ) = ( y ( +g ` G ) x ) ) |
| 24 | 23 | eqcomd | |- ( ( ( ph /\ y e. T ) /\ x e. U ) -> ( y ( +g ` G ) x ) = ( y .- ( ( invg ` G ) ` x ) ) ) |
| 25 | oveq2 | |- ( z = ( ( invg ` G ) ` x ) -> ( y .- z ) = ( y .- ( ( invg ` G ) ` x ) ) ) |
|
| 26 | 25 | rspceeqv | |- ( ( ( ( invg ` G ) ` x ) e. U /\ ( y ( +g ` G ) x ) = ( y .- ( ( invg ` G ) ` x ) ) ) -> E. z e. U ( y ( +g ` G ) x ) = ( y .- z ) ) |
| 27 | 11 24 26 | syl2anc | |- ( ( ( ph /\ y e. T ) /\ x e. U ) -> E. z e. U ( y ( +g ` G ) x ) = ( y .- z ) ) |
| 28 | eqeq1 | |- ( X = ( y ( +g ` G ) x ) -> ( X = ( y .- z ) <-> ( y ( +g ` G ) x ) = ( y .- z ) ) ) |
|
| 29 | 28 | rexbidv | |- ( X = ( y ( +g ` G ) x ) -> ( E. z e. U X = ( y .- z ) <-> E. z e. U ( y ( +g ` G ) x ) = ( y .- z ) ) ) |
| 30 | 27 29 | syl5ibrcom | |- ( ( ( ph /\ y e. T ) /\ x e. U ) -> ( X = ( y ( +g ` G ) x ) -> E. z e. U X = ( y .- z ) ) ) |
| 31 | 30 | rexlimdva | |- ( ( ph /\ y e. T ) -> ( E. x e. U X = ( y ( +g ` G ) x ) -> E. z e. U X = ( y .- z ) ) ) |
| 32 | 9 | subginvcl | |- ( ( U e. ( SubGrp ` G ) /\ z e. U ) -> ( ( invg ` G ) ` z ) e. U ) |
| 33 | 8 32 | sylan | |- ( ( ( ph /\ y e. T ) /\ z e. U ) -> ( ( invg ` G ) ` z ) e. U ) |
| 34 | 18 | adantr | |- ( ( ( ph /\ y e. T ) /\ z e. U ) -> y e. ( Base ` G ) ) |
| 35 | 21 | sselda | |- ( ( ( ph /\ y e. T ) /\ z e. U ) -> z e. ( Base ` G ) ) |
| 36 | 12 5 9 1 | grpsubval | |- ( ( y e. ( Base ` G ) /\ z e. ( Base ` G ) ) -> ( y .- z ) = ( y ( +g ` G ) ( ( invg ` G ) ` z ) ) ) |
| 37 | 34 35 36 | syl2anc | |- ( ( ( ph /\ y e. T ) /\ z e. U ) -> ( y .- z ) = ( y ( +g ` G ) ( ( invg ` G ) ` z ) ) ) |
| 38 | oveq2 | |- ( x = ( ( invg ` G ) ` z ) -> ( y ( +g ` G ) x ) = ( y ( +g ` G ) ( ( invg ` G ) ` z ) ) ) |
|
| 39 | 38 | rspceeqv | |- ( ( ( ( invg ` G ) ` z ) e. U /\ ( y .- z ) = ( y ( +g ` G ) ( ( invg ` G ) ` z ) ) ) -> E. x e. U ( y .- z ) = ( y ( +g ` G ) x ) ) |
| 40 | 33 37 39 | syl2anc | |- ( ( ( ph /\ y e. T ) /\ z e. U ) -> E. x e. U ( y .- z ) = ( y ( +g ` G ) x ) ) |
| 41 | eqeq1 | |- ( X = ( y .- z ) -> ( X = ( y ( +g ` G ) x ) <-> ( y .- z ) = ( y ( +g ` G ) x ) ) ) |
|
| 42 | 41 | rexbidv | |- ( X = ( y .- z ) -> ( E. x e. U X = ( y ( +g ` G ) x ) <-> E. x e. U ( y .- z ) = ( y ( +g ` G ) x ) ) ) |
| 43 | 40 42 | syl5ibrcom | |- ( ( ( ph /\ y e. T ) /\ z e. U ) -> ( X = ( y .- z ) -> E. x e. U X = ( y ( +g ` G ) x ) ) ) |
| 44 | 43 | rexlimdva | |- ( ( ph /\ y e. T ) -> ( E. z e. U X = ( y .- z ) -> E. x e. U X = ( y ( +g ` G ) x ) ) ) |
| 45 | 31 44 | impbid | |- ( ( ph /\ y e. T ) -> ( E. x e. U X = ( y ( +g ` G ) x ) <-> E. z e. U X = ( y .- z ) ) ) |
| 46 | 45 | rexbidva | |- ( ph -> ( E. y e. T E. x e. U X = ( y ( +g ` G ) x ) <-> E. y e. T E. z e. U X = ( y .- z ) ) ) |
| 47 | 7 46 | bitrd | |- ( ph -> ( X e. ( T .(+) U ) <-> E. y e. T E. z e. U X = ( y .- z ) ) ) |