This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| lsmdisj3b.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| lsmdisj3b.2 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| Assertion | lsmdisj3b | ⊢ ( 𝜑 → ( ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ↔ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 6 | lsmdisj3b.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 7 | lsmdisj3b.2 | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 8 | 1 2 4 3 5 | lsmdisj2b | ⊢ ( 𝜑 → ( ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ↔ ( ( 𝑆 ∩ ( 𝑈 ⊕ 𝑇 ) ) = { 0 } ∧ ( 𝑈 ∩ 𝑇 ) = { 0 } ) ) ) |
| 9 | 1 6 | lsmcom2 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 10 | 3 4 7 9 | syl3anc | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| 11 | 10 | ineq2d | ⊢ ( 𝜑 → ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = ( 𝑆 ∩ ( 𝑈 ⊕ 𝑇 ) ) ) |
| 12 | 11 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ↔ ( 𝑆 ∩ ( 𝑈 ⊕ 𝑇 ) ) = { 0 } ) ) |
| 13 | incom | ⊢ ( 𝑇 ∩ 𝑈 ) = ( 𝑈 ∩ 𝑇 ) | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = ( 𝑈 ∩ 𝑇 ) ) |
| 15 | 14 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝑇 ∩ 𝑈 ) = { 0 } ↔ ( 𝑈 ∩ 𝑇 ) = { 0 } ) ) |
| 16 | 12 15 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ↔ ( ( 𝑆 ∩ ( 𝑈 ⊕ 𝑇 ) ) = { 0 } ∧ ( 𝑈 ∩ 𝑇 ) = { 0 } ) ) ) |
| 17 | 8 16 | bitr4d | ⊢ ( 𝜑 → ( ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ↔ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) ) |