This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | lsmdisj2b | ⊢ ( 𝜑 → ( ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ↔ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 6 | incom | ⊢ ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑆 ) | |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 10 | incom | ⊢ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) | |
| 11 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ) | |
| 12 | 10 11 | eqtrid | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ) |
| 13 | simprr | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑆 ∩ 𝑈 ) = { 0 } ) | |
| 14 | 1 7 8 9 5 12 13 | lsmdisj2r | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑆 ) = { 0 } ) |
| 15 | 6 14 | eqtrid | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ) |
| 16 | incom | ⊢ ( 𝑇 ∩ 𝑈 ) = ( 𝑈 ∩ 𝑇 ) | |
| 17 | 1 8 9 7 5 11 | lsmdisj | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ∩ 𝑇 ) = { 0 } ∧ ( 𝑈 ∩ 𝑇 ) = { 0 } ) ) |
| 18 | 17 | simprd | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑈 ∩ 𝑇 ) = { 0 } ) |
| 19 | 16 18 | eqtrid | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 20 | 15 19 | jca | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) |
| 21 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 22 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 23 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 24 | simprl | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ) | |
| 25 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 26 | 1 21 22 23 5 24 25 | lsmdisj2r | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ) |
| 27 | 1 21 22 23 5 24 | lsmdisjr | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) |
| 28 | 27 | simprd | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑆 ∩ 𝑈 ) = { 0 } ) |
| 29 | 26 28 | jca | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) → ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) |
| 30 | 20 29 | impbida | ⊢ ( 𝜑 → ( ( ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ↔ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) ) |