This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| lsmdisj3b.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| lsmdisj3a.2 | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) | ||
| Assertion | lsmdisj3a | ⊢ ( 𝜑 → ( ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ↔ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 6 | lsmdisj3b.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 7 | lsmdisj3a.2 | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) | |
| 8 | 1 6 | lsmcom2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) → ( 𝑆 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑆 ) ) |
| 9 | 2 3 7 8 | syl3anc | ⊢ ( 𝜑 → ( 𝑆 ⊕ 𝑇 ) = ( 𝑇 ⊕ 𝑆 ) ) |
| 10 | 9 | ineq1d | ⊢ ( 𝜑 → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = ( ( 𝑇 ⊕ 𝑆 ) ∩ 𝑈 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝜑 → ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ↔ ( ( 𝑇 ⊕ 𝑆 ) ∩ 𝑈 ) = { 0 } ) ) |
| 12 | incom | ⊢ ( 𝑆 ∩ 𝑇 ) = ( 𝑇 ∩ 𝑆 ) | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ( 𝑇 ∩ 𝑆 ) ) |
| 14 | 13 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝑆 ∩ 𝑇 ) = { 0 } ↔ ( 𝑇 ∩ 𝑆 ) = { 0 } ) ) |
| 15 | 11 14 | anbi12d | ⊢ ( 𝜑 → ( ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ↔ ( ( ( 𝑇 ⊕ 𝑆 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑇 ∩ 𝑆 ) = { 0 } ) ) ) |
| 16 | 1 3 2 4 5 | lsmdisj2a | ⊢ ( 𝜑 → ( ( ( ( 𝑇 ⊕ 𝑆 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑇 ∩ 𝑆 ) = { 0 } ) ↔ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) ) |
| 17 | 15 16 | bitrd | ⊢ ( 𝜑 → ( ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ↔ ( ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) ) |