This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | lsmdisj2a | ⊢ ( 𝜑 → ( ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ↔ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 7 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ) → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ) | |
| 10 | simprr | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ) → ( 𝑆 ∩ 𝑇 ) = { 0 } ) | |
| 11 | 1 6 7 8 5 9 10 | lsmdisj2 | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ) → ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ) |
| 12 | 1 6 7 8 5 9 | lsmdisj | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ) → ( ( 𝑆 ∩ 𝑈 ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) |
| 13 | 12 | simpld | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ) → ( 𝑆 ∩ 𝑈 ) = { 0 } ) |
| 14 | 11 13 | jca | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ) → ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) |
| 15 | incom | ⊢ ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = ( 𝑈 ∩ ( 𝑆 ⊕ 𝑇 ) ) | |
| 16 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 17 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 18 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 19 | incom | ⊢ ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) | |
| 20 | simprl | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ) | |
| 21 | 19 20 | eqtrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ) |
| 22 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑆 ∩ 𝑈 ) = { 0 } ) | |
| 23 | 1 16 17 18 5 21 22 | lsmdisj2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑈 ∩ ( 𝑆 ⊕ 𝑇 ) ) = { 0 } ) |
| 24 | 15 23 | eqtrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ) |
| 25 | incom | ⊢ ( 𝑆 ∩ 𝑇 ) = ( 𝑇 ∩ 𝑆 ) | |
| 26 | 1 18 16 17 5 20 | lsmdisjr | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( 𝑇 ∩ 𝑆 ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) |
| 27 | 26 | simpld | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑇 ∩ 𝑆 ) = { 0 } ) |
| 28 | 25 27 | eqtrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( 𝑆 ∩ 𝑇 ) = { 0 } ) |
| 29 | 24 28 | jca | ⊢ ( ( 𝜑 ∧ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) → ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ) |
| 30 | 14 29 | impbida | ⊢ ( 𝜑 → ( ( ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ∧ ( 𝑆 ∩ 𝑇 ) = { 0 } ) ↔ ( ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) ) |