This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 22-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| lsmdisjr.i | ⊢ ( 𝜑 → ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ) | ||
| lsmdisj2r.i | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| Assertion | lsmdisj2r | ⊢ ( 𝜑 → ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 6 | lsmdisjr.i | ⊢ ( 𝜑 → ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ) | |
| 7 | lsmdisj2r.i | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 8 | eqid | ⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) | |
| 9 | 8 1 | oppglsm | ⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 ) = ( 𝑆 ⊕ 𝑈 ) |
| 10 | 9 | ineq2i | ⊢ ( 𝑇 ∩ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 ) ) = ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) |
| 11 | incom | ⊢ ( 𝑇 ∩ ( 𝑆 ⊕ 𝑈 ) ) = ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) | |
| 12 | 10 11 | eqtri | ⊢ ( 𝑇 ∩ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 ) ) = ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) |
| 13 | eqid | ⊢ ( LSSum ‘ ( oppg ‘ 𝐺 ) ) = ( LSSum ‘ ( oppg ‘ 𝐺 ) ) | |
| 14 | 8 | oppgsubg | ⊢ ( SubGrp ‘ 𝐺 ) = ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) |
| 15 | 4 14 | eleqtrdi | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) |
| 16 | 3 14 | eleqtrdi | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) |
| 17 | 2 14 | eleqtrdi | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ ( oppg ‘ 𝐺 ) ) ) |
| 18 | 8 5 | oppgid | ⊢ 0 = ( 0g ‘ ( oppg ‘ 𝐺 ) ) |
| 19 | 8 1 | oppglsm | ⊢ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) = ( 𝑇 ⊕ 𝑈 ) |
| 20 | 19 | ineq1i | ⊢ ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ∩ 𝑆 ) = ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑆 ) |
| 21 | incom | ⊢ ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑆 ) = ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) | |
| 22 | 20 21 | eqtri | ⊢ ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ∩ 𝑆 ) = ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) |
| 23 | 22 6 | eqtrid | ⊢ ( 𝜑 → ( ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑇 ) ∩ 𝑆 ) = { 0 } ) |
| 24 | incom | ⊢ ( 𝑇 ∩ 𝑈 ) = ( 𝑈 ∩ 𝑇 ) | |
| 25 | 24 7 | eqtr3id | ⊢ ( 𝜑 → ( 𝑈 ∩ 𝑇 ) = { 0 } ) |
| 26 | 13 15 16 17 18 23 25 | lsmdisj2 | ⊢ ( 𝜑 → ( 𝑇 ∩ ( 𝑈 ( LSSum ‘ ( oppg ‘ 𝐺 ) ) 𝑆 ) ) = { 0 } ) |
| 27 | 12 26 | eqtr3id | ⊢ ( 𝜑 → ( ( 𝑆 ⊕ 𝑈 ) ∩ 𝑇 ) = { 0 } ) |