This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| lsmdisjr.i | ⊢ ( 𝜑 → ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ) | ||
| Assertion | lsmdisjr | ⊢ ( 𝜑 → ( ( 𝑆 ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 6 | lsmdisjr.i | ⊢ ( 𝜑 → ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = { 0 } ) | |
| 7 | incom | ⊢ ( 𝑆 ∩ ( 𝑇 ⊕ 𝑈 ) ) = ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑆 ) | |
| 8 | 7 6 | eqtr3id | ⊢ ( 𝜑 → ( ( 𝑇 ⊕ 𝑈 ) ∩ 𝑆 ) = { 0 } ) |
| 9 | 1 3 4 2 5 8 | lsmdisj | ⊢ ( 𝜑 → ( ( 𝑇 ∩ 𝑆 ) = { 0 } ∧ ( 𝑈 ∩ 𝑆 ) = { 0 } ) ) |
| 10 | incom | ⊢ ( 𝑇 ∩ 𝑆 ) = ( 𝑆 ∩ 𝑇 ) | |
| 11 | 10 | eqeq1i | ⊢ ( ( 𝑇 ∩ 𝑆 ) = { 0 } ↔ ( 𝑆 ∩ 𝑇 ) = { 0 } ) |
| 12 | incom | ⊢ ( 𝑈 ∩ 𝑆 ) = ( 𝑆 ∩ 𝑈 ) | |
| 13 | 12 | eqeq1i | ⊢ ( ( 𝑈 ∩ 𝑆 ) = { 0 } ↔ ( 𝑆 ∩ 𝑈 ) = { 0 } ) |
| 14 | 11 13 | anbi12i | ⊢ ( ( ( 𝑇 ∩ 𝑆 ) = { 0 } ∧ ( 𝑈 ∩ 𝑆 ) = { 0 } ) ↔ ( ( 𝑆 ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) |
| 15 | 9 14 | sylib | ⊢ ( 𝜑 → ( ( 𝑆 ∩ 𝑇 ) = { 0 } ∧ ( 𝑆 ∩ 𝑈 ) = { 0 } ) ) |