This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| lsmdisj.o | |- .0. = ( 0g ` G ) |
||
| Assertion | lsmdisj2b | |- ( ph -> ( ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 3 | lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | lsmdisj.o | |- .0. = ( 0g ` G ) |
|
| 6 | incom | |- ( S i^i ( T .(+) U ) ) = ( ( T .(+) U ) i^i S ) |
|
| 7 | 3 | adantr | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> T e. ( SubGrp ` G ) ) |
| 8 | 2 | adantr | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> S e. ( SubGrp ` G ) ) |
| 9 | 4 | adantr | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> U e. ( SubGrp ` G ) ) |
| 10 | incom | |- ( T i^i ( S .(+) U ) ) = ( ( S .(+) U ) i^i T ) |
|
| 11 | simprl | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( S .(+) U ) i^i T ) = { .0. } ) |
|
| 12 | 10 11 | eqtrid | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( T i^i ( S .(+) U ) ) = { .0. } ) |
| 13 | simprr | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( S i^i U ) = { .0. } ) |
|
| 14 | 1 7 8 9 5 12 13 | lsmdisj2r | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( T .(+) U ) i^i S ) = { .0. } ) |
| 15 | 6 14 | eqtrid | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( S i^i ( T .(+) U ) ) = { .0. } ) |
| 16 | incom | |- ( T i^i U ) = ( U i^i T ) |
|
| 17 | 1 8 9 7 5 11 | lsmdisj | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( S i^i T ) = { .0. } /\ ( U i^i T ) = { .0. } ) ) |
| 18 | 17 | simprd | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( U i^i T ) = { .0. } ) |
| 19 | 16 18 | eqtrid | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( T i^i U ) = { .0. } ) |
| 20 | 15 19 | jca | |- ( ( ph /\ ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) |
| 21 | 2 | adantr | |- ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> S e. ( SubGrp ` G ) ) |
| 22 | 3 | adantr | |- ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> T e. ( SubGrp ` G ) ) |
| 23 | 4 | adantr | |- ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> U e. ( SubGrp ` G ) ) |
| 24 | simprl | |- ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( S i^i ( T .(+) U ) ) = { .0. } ) |
|
| 25 | simprr | |- ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( T i^i U ) = { .0. } ) |
|
| 26 | 1 21 22 23 5 24 25 | lsmdisj2r | |- ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( ( S .(+) U ) i^i T ) = { .0. } ) |
| 27 | 1 21 22 23 5 24 | lsmdisjr | |- ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( ( S i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) |
| 28 | 27 | simprd | |- ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( S i^i U ) = { .0. } ) |
| 29 | 26 28 | jca | |- ( ( ph /\ ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) -> ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) |
| 30 | 20 29 | impbida | |- ( ph -> ( ( ( ( S .(+) U ) i^i T ) = { .0. } /\ ( S i^i U ) = { .0. } ) <-> ( ( S i^i ( T .(+) U ) ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) ) |