This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjointness from a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| lsmdisj.i | ⊢ ( 𝜑 → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ) | ||
| Assertion | lsmdisj | ⊢ ( 𝜑 → ( ( 𝑆 ∩ 𝑈 ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | lsmdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 6 | lsmdisj.i | ⊢ ( 𝜑 → ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) = { 0 } ) | |
| 7 | 1 | lsmub1 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 8 | 2 3 7 | syl2anc | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 9 | 8 | ssrind | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑈 ) ⊆ ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ) |
| 10 | 9 6 | sseqtrd | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑈 ) ⊆ { 0 } ) |
| 11 | 5 | subg0cl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑆 ) |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
| 13 | 5 | subg0cl | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑈 ) |
| 14 | 4 13 | syl | ⊢ ( 𝜑 → 0 ∈ 𝑈 ) |
| 15 | 12 14 | elind | ⊢ ( 𝜑 → 0 ∈ ( 𝑆 ∩ 𝑈 ) ) |
| 16 | 15 | snssd | ⊢ ( 𝜑 → { 0 } ⊆ ( 𝑆 ∩ 𝑈 ) ) |
| 17 | 10 16 | eqssd | ⊢ ( 𝜑 → ( 𝑆 ∩ 𝑈 ) = { 0 } ) |
| 18 | 1 | lsmub2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 19 | 2 3 18 | syl2anc | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 20 | 19 | ssrind | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) ⊆ ( ( 𝑆 ⊕ 𝑇 ) ∩ 𝑈 ) ) |
| 21 | 20 6 | sseqtrd | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) ⊆ { 0 } ) |
| 22 | 5 | subg0cl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑇 ) |
| 23 | 3 22 | syl | ⊢ ( 𝜑 → 0 ∈ 𝑇 ) |
| 24 | 23 14 | elind | ⊢ ( 𝜑 → 0 ∈ ( 𝑇 ∩ 𝑈 ) ) |
| 25 | 24 | snssd | ⊢ ( 𝜑 → { 0 } ⊆ ( 𝑇 ∩ 𝑈 ) ) |
| 26 | 21 25 | eqssd | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 27 | 17 26 | jca | ⊢ ( 𝜑 → ( ( 𝑆 ∩ 𝑈 ) = { 0 } ∧ ( 𝑇 ∩ 𝑈 ) = { 0 } ) ) |