This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| lsmdisj.o | |- .0. = ( 0g ` G ) |
||
| Assertion | lsmdisj2a | |- ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 3 | lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | lsmdisj.o | |- .0. = ( 0g ` G ) |
|
| 6 | 2 | adantr | |- ( ( ph /\ ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) ) -> S e. ( SubGrp ` G ) ) |
| 7 | 3 | adantr | |- ( ( ph /\ ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) ) -> T e. ( SubGrp ` G ) ) |
| 8 | 4 | adantr | |- ( ( ph /\ ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) ) -> U e. ( SubGrp ` G ) ) |
| 9 | simprl | |- ( ( ph /\ ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) ) -> ( ( S .(+) T ) i^i U ) = { .0. } ) |
|
| 10 | simprr | |- ( ( ph /\ ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) ) -> ( S i^i T ) = { .0. } ) |
|
| 11 | 1 6 7 8 5 9 10 | lsmdisj2 | |- ( ( ph /\ ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) ) -> ( T i^i ( S .(+) U ) ) = { .0. } ) |
| 12 | 1 6 7 8 5 9 | lsmdisj | |- ( ( ph /\ ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) ) -> ( ( S i^i U ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) |
| 13 | 12 | simpld | |- ( ( ph /\ ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) ) -> ( S i^i U ) = { .0. } ) |
| 14 | 11 13 | jca | |- ( ( ph /\ ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) ) -> ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) |
| 15 | incom | |- ( ( S .(+) T ) i^i U ) = ( U i^i ( S .(+) T ) ) |
|
| 16 | 2 | adantr | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> S e. ( SubGrp ` G ) ) |
| 17 | 4 | adantr | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> U e. ( SubGrp ` G ) ) |
| 18 | 3 | adantr | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> T e. ( SubGrp ` G ) ) |
| 19 | incom | |- ( ( S .(+) U ) i^i T ) = ( T i^i ( S .(+) U ) ) |
|
| 20 | simprl | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( T i^i ( S .(+) U ) ) = { .0. } ) |
|
| 21 | 19 20 | eqtrid | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( S .(+) U ) i^i T ) = { .0. } ) |
| 22 | simprr | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( S i^i U ) = { .0. } ) |
|
| 23 | 1 16 17 18 5 21 22 | lsmdisj2 | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( U i^i ( S .(+) T ) ) = { .0. } ) |
| 24 | 15 23 | eqtrid | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( S .(+) T ) i^i U ) = { .0. } ) |
| 25 | incom | |- ( S i^i T ) = ( T i^i S ) |
|
| 26 | 1 18 16 17 5 20 | lsmdisjr | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( T i^i S ) = { .0. } /\ ( T i^i U ) = { .0. } ) ) |
| 27 | 26 | simpld | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( T i^i S ) = { .0. } ) |
| 28 | 25 27 | eqtrid | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( S i^i T ) = { .0. } ) |
| 29 | 24 28 | jca | |- ( ( ph /\ ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) -> ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) ) |
| 30 | 14 29 | impbida | |- ( ph -> ( ( ( ( S .(+) T ) i^i U ) = { .0. } /\ ( S i^i T ) = { .0. } ) <-> ( ( T i^i ( S .(+) U ) ) = { .0. } /\ ( S i^i U ) = { .0. } ) ) ) |