This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | lsmcntzr | ⊢ ( 𝜑 → ( 𝑆 ⊆ ( 𝑍 ‘ ( 𝑇 ⊕ 𝑈 ) ) ↔ ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | lsmcntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 6 | 1 3 4 2 5 | lsmcntz | ⊢ ( 𝜑 → ( ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑈 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) ) |
| 7 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 8 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 9 | 2 7 8 | 3syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 11 | 10 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 | 10 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 14 | 4 13 | syl | ⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 15 | 10 1 | lsmssv | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 16 | 9 12 14 15 | syl3anc | ⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 17 | 10 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 18 | 2 17 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 19 | 10 5 | cntzrec | ⊢ ( ( ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 20 | 16 18 19 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑇 ⊕ 𝑈 ) ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 21 | 10 5 | cntzrec | ⊢ ( ( 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) ) |
| 22 | 12 18 21 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) ) |
| 23 | 10 5 | cntzrec | ⊢ ( ( 𝑈 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑈 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ) ) |
| 24 | 14 18 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑈 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ) ) |
| 25 | 22 24 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑈 ⊆ ( 𝑍 ‘ 𝑆 ) ) ↔ ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ) ) ) |
| 26 | 6 20 25 | 3bitr3d | ⊢ ( 𝜑 → ( 𝑆 ⊆ ( 𝑍 ‘ ( 𝑇 ⊕ 𝑈 ) ) ↔ ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ∧ 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ) ) ) |