This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| lsmcntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | lsmcntz | ⊢ ( 𝜑 → ( ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑍 ‘ 𝑈 ) ↔ ( 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmcntz.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 3 | lsmcntz.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | lsmcntz.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | lsmcntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 6 | subgrcl | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 8 | 7 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 9 | 7 5 | cntzsubg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑍 ‘ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 10 | 6 8 9 | syl2anc | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑍 ‘ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → ( 𝑍 ‘ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 12 | 1 | lsmlub | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑍 ‘ 𝑈 ) ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ↔ ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑍 ‘ 𝑈 ) ) ) |
| 13 | 2 3 11 12 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ↔ ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑍 ‘ 𝑈 ) ) ) |
| 14 | 13 | bicomd | ⊢ ( 𝜑 → ( ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑍 ‘ 𝑈 ) ↔ ( 𝑆 ⊆ ( 𝑍 ‘ 𝑈 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ) ) |