This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| lsmcntz.z | |- Z = ( Cntz ` G ) |
||
| Assertion | lsmcntzr | |- ( ph -> ( S C_ ( Z ` ( T .(+) U ) ) <-> ( S C_ ( Z ` T ) /\ S C_ ( Z ` U ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 3 | lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | lsmcntz.z | |- Z = ( Cntz ` G ) |
|
| 6 | 1 3 4 2 5 | lsmcntz | |- ( ph -> ( ( T .(+) U ) C_ ( Z ` S ) <-> ( T C_ ( Z ` S ) /\ U C_ ( Z ` S ) ) ) ) |
| 7 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 8 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 9 | 2 7 8 | 3syl | |- ( ph -> G e. Mnd ) |
| 10 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 11 | 10 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 12 | 3 11 | syl | |- ( ph -> T C_ ( Base ` G ) ) |
| 13 | 10 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 14 | 4 13 | syl | |- ( ph -> U C_ ( Base ` G ) ) |
| 15 | 10 1 | lsmssv | |- ( ( G e. Mnd /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( T .(+) U ) C_ ( Base ` G ) ) |
| 16 | 9 12 14 15 | syl3anc | |- ( ph -> ( T .(+) U ) C_ ( Base ` G ) ) |
| 17 | 10 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 18 | 2 17 | syl | |- ( ph -> S C_ ( Base ` G ) ) |
| 19 | 10 5 | cntzrec | |- ( ( ( T .(+) U ) C_ ( Base ` G ) /\ S C_ ( Base ` G ) ) -> ( ( T .(+) U ) C_ ( Z ` S ) <-> S C_ ( Z ` ( T .(+) U ) ) ) ) |
| 20 | 16 18 19 | syl2anc | |- ( ph -> ( ( T .(+) U ) C_ ( Z ` S ) <-> S C_ ( Z ` ( T .(+) U ) ) ) ) |
| 21 | 10 5 | cntzrec | |- ( ( T C_ ( Base ` G ) /\ S C_ ( Base ` G ) ) -> ( T C_ ( Z ` S ) <-> S C_ ( Z ` T ) ) ) |
| 22 | 12 18 21 | syl2anc | |- ( ph -> ( T C_ ( Z ` S ) <-> S C_ ( Z ` T ) ) ) |
| 23 | 10 5 | cntzrec | |- ( ( U C_ ( Base ` G ) /\ S C_ ( Base ` G ) ) -> ( U C_ ( Z ` S ) <-> S C_ ( Z ` U ) ) ) |
| 24 | 14 18 23 | syl2anc | |- ( ph -> ( U C_ ( Z ` S ) <-> S C_ ( Z ` U ) ) ) |
| 25 | 22 24 | anbi12d | |- ( ph -> ( ( T C_ ( Z ` S ) /\ U C_ ( Z ` S ) ) <-> ( S C_ ( Z ` T ) /\ S C_ ( Z ` U ) ) ) ) |
| 26 | 6 20 25 | 3bitr3d | |- ( ph -> ( S C_ ( Z ` ( T .(+) U ) ) <-> ( S C_ ( Z ` T ) /\ S C_ ( Z ` U ) ) ) ) |